
Abstract We examined attention shifting in baboons and
humans during the learning of visual categories. Within a
conditional matching-to-sample task, participants of the
two species sequentially learned two two-feature cate-
gories which shared a common feature. Results showed
that humans encoded both features of the initially learned
category, but predominantly only the distinctive feature of
the subsequently learned category. Although baboons ini-
tially encoded both features of the first category, they ul-
timately retained only the distinctive features of each cat-
egory. Empirical data from the two species were analyzed
with the 1996 ADIT connectionist model of Kruschke.
ADIT fits the baboon data when the attentional shift rate
is zero, and the human data when the attentional shift rate
is not zero. These empirical and modeling results suggest
species differences in learned attention to visual features.

Key words Attention · Categorization · Primate · 
Baboon · Human

Introduction

This study investigates attention during learning from a
comparative perspective. The term “attention” has been
used to refer to many different attentional processes.
Some research has emphasized spatially selective atten-
tion. Witte et al. (1996), for instance, investigated whether
the location of a pre-cue stimulus relative to a target af-
fected response times of rhesus monkeys in a target detec-
tion paradigm. Other studies have inferred dimensionally
selective attentional mechanisms from discriminative per-

formance in tasks involving complex stimuli. An example
of these studies comes from research on conceptual dis-
crimination by monkeys (e.g., D’Amato and van Sant
1988) and pigeons (e.g., Cerella 1979), which suggests
that discrimination performance relies on an attentive
analysis of stimulus features such as color, rather than on
configurations of features. We consider here a different
but related aspect of attention, namely, the ability of at-
tention to rapidly shift away from one stimulus dimension
to another, contingent upon prior associative learning.

The idea that attention to dimensions can shift during
learning has a long history in the animal learning litera-
ture (see, for example, the historical summary provided in
Chapter 1 of Sutherland and Mackintosh 1971). Rescorla
and Wagner (1972), in their classic model of associative
learning, suggested that different cues can have different
associabilities, or attention strengths. Sutherland and Mack-
intosh (1971) and Mackintosh (1975) presented formal
models of how attention to cues can change during learning.
In these models, the attention allocated to a cue determines
the cue’s associability, such that a cue to which more at-
tention is paid is more easily associated with other stimuli.

Many phenomena in human and animal learning have
been explained by the idea that attention to cues can be
changed by learning. One such phenomenon occurs when
the cue-to-outcome correspondence shifts at some point
during the course of training. Under conditions where the
shifted correspondence has the same relevant, diagnostic,
or valid cues as the initial correspondence, learning the
shifted correspondence is relatively fast. Under other con-
ditions, where the relevant cues for the shifted correspon-
dence differ from those for the initial correspondence,
learning the shifted correspondence is relatively slow
(e.g., Kruschke 1996b). This difference can be explained
by assuming that the subject learns to attend to the rele-
vant cue(s) in the initial phase of training, and this learned
attention perseverates into the shifted phase of training.
When the same cue(s) continue to be relevant, this atten-
tional perseveration is advantageous. When different cues
are relevant in the shifted phase, the attentional persever-
ation is detrimental.
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The ADIT model (Kruschke 1996 a), which we use in
this article to address attentional learning in humans and
baboons, is closely related to the model of Mackintosh
(1975) (Kruschke 1997). Mackintosh (1969) presented re-
search comparing attentional learning across different
non-human species. Our present research is the first to di-
rectly compare attentional learning abilities of humans
and monkeys, using an experimental paradigm that dra-
matically highlights attentional abilities in humans.

Attentional shifts during learning by humans

In a recent experiment, Kruschke (1996 a, experiment 2)
presented people with a medical diagnosis task in which a
learner had to diagnose a hypothetical patient as having
one of several possible fictitious diseases. The basic design
involved distinguishing a disease shown early in training
(referred to as “E”) from a disease shown later in training
(“L”). Each disease had two symptoms. One of the two
symptoms was shared by diseases E and L. It is labeled
“I” for “imperfect predictor”. The other symptom was a
perfect predictor of the disease. It is labeled “PE” (for
“perfect predictor” of E) for disease E, and PL for disease
L.

Figure 1 shows the abstract design of this experiment
(Kruschke 1996a). In an early training phase, subjects
were asked to learn only disease E. In a later training
phase, diseases E and L were intermixed across trials with
equal frequencies. After this two-phase training, partici-
pants were asked to diagnose patients who had novel
combinations of the possible symptoms, such as the
symptom I alone, or symptoms PE+PL presented simulta-
neously.

How should a rational learner respond to these novel
symptom combinations? Consider symptom I presented
alone. During the entire course of training, it appeared
twice with disease E for each time it appeared with dis-
ease L. Therefore a rational response would be to choose
disease E. Consider now the symptom combination

PE+PL. During the entire course of training, symptom PE
appeared with disease E twice for each time that symptom
PL appeared with disease L. A rational response to
PE+PL would therefore favor E again.

Results showed that when tested with symptom I
alone, people diagnosed it as the early disease E. By con-
trast, when presented with the conflicting PE+PL symp-
toms, people chose the later disease L. According to
Kruschke (1996a), these results can be explained as fol-
lows. Because disease E is learned first, its two symptoms
(I and PE) are each associated with the early disease.
When subsequently learning disease L, the shared symp-
tom I is already associated with E, which conflicts with
the correct response, L. To avoid this conflict, people shift
their attention away from I to PL, thereby encoding dis-
ease L predominantly by its distinctive symptom PL, and
not by its shared symptom I. Consequently, when pre-
sented with symptom I alone during the test phase, people
tend to respond with disease E. When tested with combi-
nation PE+PL, people diagnose it as the later disease, be-
cause PL is the strongly encoded perfect predictor of dis-
ease L, but PE is only half of the two symptoms needed to
predict disease E.

This explanation suggests that people’s response to
symptom combination PE+PL is not irrational, but is in-
stead a side effect of a highly adaptive mechanism for se-
lective attention during learning. When learning the later
disease, people dramatically reduce interference with their
previously learned associations by selectively attending to
the distinctive symptom PL, and by selectively ignoring
the conflicting symptom I. This shift of attention protects
and preserves previously acquired knowledge, and the
shift simultaneously enhances rapid acquisition of new as-
sociations.

The principle of rapidly shifting attention in learning
was formalized by Kruschke (1996a) in a connectionist
model, called ADIT (attention to distinctive input). ADIT
accurately fit data from several experiments, providing
additional evidence that the theory of rapid attention shifts
has merit.

Goal of this research

It is important to study learned attention for two reasons.
First, learned attention arguably accounts for many phe-
nomena in animal and human learning. Second, rapid
shifts of attention are a computationally efficient means of
reducing interference between previously learned associa-
tions and novel associations. Given the importance of
learned attention, the rationale of the current study was to
test baboons with an analogue, in the visual domain, of
the disease diagnosis task, in order to assess the ability of
these animals to shift attention while sparing previous cat-
egory knowledge. Experimental results will suggest that
baboons do not shift attention comparably to humans. In a
second part of this paper, data from each species will be
fit with the ADIT model. This model formalizes the no-
tion of rapidly shifting attention, and makes detailed
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Fig.1 Abstract design of the experiment from Kruschke (1996,
experiment 2). E and L refer to the earlier and later categories to be
learned, respectively. I, PE and PL refer to the stimulus features
(i.e., symptoms: I imperfect predictor of the diseases, PE perfect
predictor of the earlier disease, PL perfect predictor of the later
disease)



quantitative predictions. In line with empirical data, the
model fits will also suggest that baboons do not shift at-
tention as humans do.

Experiment: evidence for species differences 
in attention shifts

Monkeys were tested with a conditional matching-to-sam-
ple task in which the visual forms to be categorized were
presented on a monitor screen. The experimental proce-
dure involved two training phases followed by a testing
phase. During the training phases, monkeys sequentially
learned two categories of two-feature visual objects, one
after the other. In the testing phase, they were presented
with various combinations of the features of the initially
and subsequently learned categories. For comparative
purposes, and as our visual task had never been presented
before to humans, people were also tested in the same
conditions as baboons.

Method

Participants

Two 6-year-old wild-born baboons (Papio papio), re-
ferred to as B04 and B06, were selected from a social
group of 12 animals in the animal facilities at the
C.N.R.S., Marseille, France. The two baboons were cho-
sen as subjects in this experiment because they were al-
ready trained in various visual discrimination tasks in-
volving the setup and the procedure employed in the pre-
sent research (e.g., Fagot and Deruelle 1997; Vauclair et
al. 1993). Animals were not deprived of food, but ob-
tained their daily food ration at the end of the day, after
completion of daily training and testing. Nine 22- to 26-
year-old psychology students also participated for mone-
tary payment. The human participants were not informed
of the purpose of the experiment.

Apparatus

The apparatus comprised a 14-inch (35-cm) color monitor
on which visual stimuli were displayed, and an analogue
joystick controlling a cursor on the monitor screen. When
baboons were tested, the set-up comprised an experimen-
tal cage (68 × 50 × 72cm) facing the joystick and the mon-
itor. This cage was fitted with a view port, two hand ports
for joystick manipulation, and a food dispenser for deliv-
ering 190-mg banana-flavored pellets. The testing appara-
tus for humans was identical to that of the baboons, ex-
cept that the monitor and the joystick were placed on a
table. For both humans and baboons, the viewing distance
was 50 cm.

Stimuli

Stimuli were composed of either one or two of the geo-
metric features shown in the top part of Fig. 2. Each of
these elementary features was composed of 510 yellow
pixels displayed on a black background. For stimuli com-
posed of more than one feature, such as those depicted in
the bottom part of Fig.2, the location of the features rela-
tive to each other was varied across trials, with the con-
straint that they did not overlap and they occupied a max-
imum of 3° of visual angle. For instance, in training phase
1, the oval form could be displayed either above or below
the zigzag line.

Experimental design

Figure 3 illustrates the abstract structure of the categories
in the two training phases. Consider first the structure of
the categories in training phase 2. Subjects had to learn
that stimuli composed of features I+PE required response
E, and stimuli composed of features I+PL required re-
sponse L. The feature I is an imperfect predictor of the
two outcomes, whereas feature PE is a perfect predictor of
outcome E, and feature PL is a perfect predictor of out-
come L. Outcome E is denoted as such because it is also
part of early training, in phase 1, whereas outcome L oc-
curs only in later training, in phase 2. This much of the de-
sign is identical to the design of experiment 2 of Kruschke
(1996a) (summarized in Fig. 1).
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Fig.2 Upper row Elementary features employed to construct the
stimulus set, and corresponding labels used in specifying the ab-
stract design. Lower row Example of two-feature stimulus used
during training phase 1 (left) or training phase 2 (right)

Fig.3 Experimental design
adopted during the two training
phases. E, OE and L refer to
the correct response categories.
I, PO1, PO2, PE and PL refer
to the stimulus features depict-
ed in Fig.2



Our account of the effect seen in humans relies on the
assumption that in phase 1 subjects learn about both fea-
tures, I and PE, of category E. Previous research (Fagot
and Deruelle 1997) suggests that baboons will select local
features of a compound stimulus, when this selection sup-
ports a viable solution. To prevent this from happening in
this experiment, another category, labeled OE, was in-
cluded in phase 1, which had instances consisting of fea-
tures I+POE1, or of PE+POE2. With this structure, only
the conjunction of features I+PE accurately predicted out-
come E in the early training phase.

General procedure

The method of testing was based on the conditional
matching-to-sample paradigm. At the beginning of each
trial, a cursor appeared in the center of the monitor, along
with a 0.5 × 0.5 cm “start” stimulus, 1.5 cm above or be-
low the cursor. Participants then had to manipulate the
joystick so as to place the cursor on the “start” stimulus to
initiate the trial. Once accomplished, a sample stimulus
appeared on either the left or the right side of the screen,
along with two response squares of different colors, 4 cm
above and below the cursor. Subjects then had to move
the cursor to the color square designating the category to
which the sample belonged. For instance, in phase 2 of the
training, participants had to select the green response
square when the sample belonged to E, or the white re-
sponse square when the sample belonged to L. The loca-
tion of response colors, either above or below the center,
was random on each trial. For monkeys, correct responses
were reinforced with food, and incorrect responses re-
sulted in a time delay of 5 s before the next trial began.
For humans, the outcome of each trial was indicated by
the French words “vrai” or “faux” (correct or wrong) ap-
pearing for 250 ms on the screen.

The first training phase was designed to teach the par-
ticipants categories E and OE (see Fig. 3). On each trial, a
training stimulus was shown on the monitor, along with a
blue and a green response square. To respond correctly,
subjects were required to select the green square if it be-
longed to E, and the blue square if the sample belonged to
OE. Because E stimuli shared one feature with all the OE
stimuli, an accurate discrimination required participants to
take into account the identity of both elemental features of
the sample. In phase 1, training blocks contained 48 trials
for humans and 96 trials for baboons. Baboons received
one to three blocks of training per day, but humans re-
ceived all training and testing blocks is immediate succes-
sion. Within each block, the OE stimuli were presented in
50% of the trials (25% for each type of OE stimulus, see
Fig.3), and the E stimuli were displayed in the remaining
50% of the trials. The order of stimulus presentation was
randomly selected prior to each block, with the constraint
that no more than three consecutive trials were from the
same category.

Prior to training phase 1, human subjects were told
how to initiate the trials and to manipulate the joystick.

They were never told, however, what the matching rule
was, but were asked to discover it by themselves. Training
phase 1 continued until the participants attained at least
80% correct responses for all three feature combinations.

The second training phase involved a discrimination
between E and L categories (Fig.3). All the procedural
details of phase 2 were identical to those of training phase
1. The two categories were presented with equal frequen-
cies. Moreover, participants had to select a green response
square when the sample belonged to E, or a white re-
sponse square when the sample was from L. The instruc-
tion given to human participants emphasized only the
need to discover the matching rule.

The testing phase consisted of series of trials in which
the sample form could be either an instance from phase 2
of training or any of the test stimuli shown in Fig. 4. Test
stimuli were either features I, PE or PL presented alone,
or the feature combinations PE and PL, or PE and PL and
I. The response squares in the test phase were always
green and white, corresponding to the E and L categories
from phase 2. As there was no correct response for the
five test stimuli, test trials with these stimuli never gave
rise to feedback for humans. However, because an ab-
sence of feedback might have been considered as a nega-
tive reinforcement by baboons (since they had previously
been rewarded in every correct trial), test trials involving
the transfer stimuli were, for baboons, randomly rein-
forced at a 50% rate.

Each monkey received 20 test blocks of 106 trials.
Each block comprised 48 E trials, 48 L trials, and 20
transfer trials involving the five test stimuli (see Fig.4).
People received only five sessions of 88 trials each, in or-
der to keep a sustained level of motivation. Their sessions
consisted of 24 E and 24 L trials intermixed with 40 test
trials (eight trials per test stimulus). Moreover, prior to the
test, human participants were instructed that they would
receive trials, similar to those of phase 2, intermixed with
some trials of a novel type, for which no feedback was
given. For the novel trials, they were asked to give their
best educated guess.

Results

Training

One baboon (B04) needed 9696 trials (101 blocks) to
reach the training criterion in training phase 1. The other
subject (B06) needed 9408 trials (98 blocks). Humans
were much faster and needed 219 trials on average (SD =
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Fig.4 Stimuli used during testing, with corresponding abstract la-
bels



148) to reach the training criterion in phase 1. For training
phase 2, criterion was reached in 864 and 1152 trials (9
and 12 blocks) for subjects B04 and B06, respectively.
Humans all reached the training criterion in phase 2
within the first block of 96 trials.

Individual learning curves for training phases 1 and 2
are reported in Fig.5a for B06 and in Fig.5b for B04. In
phase 1, B06 learned category E before category OE. This
relative difficulty of OE might be accounted for by its com-
plexity, in that it comprises two types of stimuli (Fig. 2).

In the initial 50 trials of phase 2, baboon B06 did 
not perform significantly above chance for category L,
χ2

(1, n = 50) = 1.28, P > 0.10, but performance on E re-

mained above chance, χ2
(1, n = 50) = 6.48, P < 0.02. Hence,

this baboon did remember category E during the initial
training sessions of phase 2. Results for B04 were very
similar to those of B06, except that during the early ses-
sions of phase 1 B04 showed a bias for response E, which
resulted in a high proportion correct on E but a low pro-
portion correct on OE. Like B06, however, B04 showed a
significant tendency to respond correctly during the initial
E trials of phase 2, χ2

(1, n = 50) = 11.52, P < 0.001, and
showed no significant bias for the initial 50 L trials of
phase 2, χ2

(1, n = 50) = 0.08, P > 0.10.
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Fig. 5 Proportion of correct
trials for a B06 and b B04, and
for each stimulus category
used in training. Training trials
were blocked by 500 trials in
training phase 1 and 50 trials
in training phase 2. Thus, the
Block on the abscissa of these
graphs is different from the
training and testing blocks
definied in the main text

a

b



Testing

Table 1 reports the response proportions for individual ba-
boons in the test phase, along with response proportions at
the group level for humans. The two monkeys behaved in
a very similar way during testing. First, both B04 and B06
showed a significant response preference for E when pre-
sented with PE, and for L when presented with PL.
Because PE and PL corresponded to the perfect predictor
of E and L, respectively, this finding shows that monkeys
have encoded associations between the distinctive fea-
tures and the corresponding categories they predict.
Second, for both B04 and B06, there was no significant
response bias for the imperfect predictor I. Finally, these
two baboons exhibited random choices when presented
with either PE+PL or I+PE+PL.

Not unlike baboons, human participants selected E and
L when presented with PE and PL, respectively (see Table
1). They also showed no significant response bias for
I+PL+PE, which comprised the imperfect and both per-
fect predictors of each category. However, humans be-
haved very differently from baboons when presented with
feature I or with feature combination PE+PL. Indeed, for
feature I there was a significant preference for response E
instead of the random choice exhibited by baboons. For
feature combination PE+PL, people showed a significant
preference for response L instead of the ambivalence
shown by the baboons.

The pattern of responses shown by human subjects in
this experiment is consistent with the results of the exper-
iment of Kruschke (1996a), despite the changes in stimuli
and apparatus. Thus, the results observed by Kruschke
(1996a) cannot be due to the use of symptoms and dis-
eases, with their implied direction of causality from dis-
eases to symptoms, nor can the original results be due to

the use of explicitly verbal material for stimuli and re-
sponses.

Discussion

This research investigated attention to visual features in
animals and humans. For that purpose, baboons were
tested with an analogue, in the visual domain, of the ficti-
tious medical diagnosis task presented to humans by
Kruschke (1996a, experiment 2). Human participants
were also tested under the same conditions as baboons.
Our discussion will focus on attentional mechanisms in-
volved in phased learning.

Humans and baboons both showed retention of cate-
gory E while learning category L in phase 2. Humans and
baboons also both showed a preference for response E
when tested with feature PE, and they both showed a pref-
erence for response L when tested with feature PL.
Humans and baboons also both showed no differential
preference for either response when presented with fea-
ture combination I+PE+PL.

The two species differed quite dramatically, however,
in their responses to test stimuli I and I+PL. Whereas the
baboons showed no preference for either response option,
humans strongly preferred response E for stimulus I, and
response L for stimulus I+PL.

Results for the humans are consistent with those of
Kruschke (1996a). As described in the Introduction, these
results can be explained by assuming that learners associ-
ated both features I and PE with the early learned category
E, but shifted attention to the distinctive feature PL of the
later learned category L. Why did baboons behave differ-
ently from humans in this experiment?

It might be argued that, in baboons only, associations
related to the imperfect predictor acquired in phase 1 were
forgotten in phase 2, due to a limited memory capacity.
This hypothesis is unlikely for at least two reasons. First,
as reported in Fig.5, both baboons presented a significant
propensity for correctly responding E during the initial 50
E trials of phase 2. Second, in phase 2, E trials which had
already been presented in phase 1 were intermixed with
50% of L trials. Thus, the experimental design favored the
retention of associations linked to E during acquisition of
category L.

Another possible hypothesis is that people may have
encoded E by the conjunction of its two elemental fea-
tures, I and PE, whereas baboons may have encoded E
merely as anything that does not contain the distinctive
features of OE, namely POE1 and POE2. According to
this hypothesis, the baboons responded OE if the sample
contained either a POE1 or POE2, and responded E if the
sample contained neither of these two features. This hy-
pothesis predicts that, during the initial presentations of L
in training phase 2, these I+PL stimuli should have been
responded to as E, because they contained neither POE1
nor POE2. However, when the initial 50 presentations of
L are considered, the two baboons responded E in 52%
(B04) and 42% (B06) of the trials, which indicates ran-
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Table 1 Percentage of E responses for stimuli in the test phase,
for baboons, humans, and best-fitting ADIT (attention to distinc-
tive input) models; No shift best fit of ADIT when attention shift-
ing is set to zero, but an additional parameter allowing different
learning rates for present and absent categories is used; Shift best
fit of ADIT with attention shifting, * significant (P ≤ 0.05) re-
sponse biases inferred from a two-tailed chi-square test, + signifi-
cant (P ≤ 0.05) response bias at the group level inferred from a
two-tailed t-test comparing the mean number of E responses for
the group to random 50-50 choice, ns no significant response bias).
No statistical analyses were conducted on baboons' mean data, be-
cause of the limited number of subjects; results for each individual
(B04, B06) are given separately

Stimulus Baboons Humans

B04 B06 Mean No shift Mean Shift

I+PE 83.6* 88.9* 86.2 85.3 99.5+ 99.7
I+PL 19.6* 11.3* 15.5 15.3 1.3+ 1.2
PE 82.5* 92.5* 87.5 86.9 99.2+ 99.3
PL 20.0* 10.5* 15.3 13.8 0.0+ 0.2
I 40.0ns 57.5ns 48.8 48.2 78.3+ 79.6
I+PL 47.5ns 55.0ns 51.2 50.7 23.3+ 24.4
I+PE+PL 52.5ns 37.5ns 45.0 49.4 53.9 52.3



dom choices (chi-square test, all Ps > 0.1) rather than a
preference for E. This latter result shows that, at least at
the end of phase 1, the two baboons relied on the encod-
ing of both features of E to respond correctly.

In brief, the results demonstrate that baboons encoded
the two elementary features of E at the end of training
phase 1 and, moreover, remembered category E in the ini-
tial training sessions of phase 2. Whereas the two elemen-
tary features of E were encoded during phase 1 and early
in phase 2, only the distinctive feature of this category
was coded at the end of phase 2, as demonstrated by the
transfer tests. This phenomenon is probably not to be ex-
plained by limitations in memory, but rather by acquired
changes in the association strength between the imperfect
predictor I and response E. We propose that, during
phase 2, the previously learned association between the
imperfect predictor I and category E progressively di-
minished, due to the frequent co-occurrence of feature I
with outcome L. Unlike humans, the baboons did not
shift attention away from feature I when it appeared with
outcome L. To compensate for this loss of association
between I and E, the association strength between the
perfect predictor PE and category E grew to be approxi-
mately equal to the association strength between the per-
fect predictor PL and the category L, leading to random
choices when the two perfect predictors conflicted in test
item PE+PL. In other words, rather than shift attention to
protect associations learned in early training and to pre-
vent interference with new learning, the baboons “over-
wrote” the earlier learned associations with new associa-
tions.

Modeling: additional evidence 
for species differences in attention shifts

The experimental results showed a dramatic difference
between the generalization behavior of baboons and hu-
mans. In this section, we demonstrate that the ADIT
model, which incorporates attention shifts, can fit the hu-
man data, and can also fit the baboon data when its atten-
tional shift rate is set to zero. The modeling thereby sup-
ports the claim that a critical difference between the ba-
boons and the humans is rapid attention shifting.

The Rescorla-Wagner (RW) model (Rescorla and
Wagner 1972) is the best known model of associative
learning in animals (cf. Miller et al. 1995; Siegel and
Allan 1996), and it has also been successfully applied to
some aspects of human category learning (e.g., Gluck and
Bower 1988). The RW model associates cues with re-
sponses (or with unconditioned stimuli) such that the
amount of associative change is proportional to the dis-
crepancy between the correct response and the predicted
outcome. In this way, the changes in associative weights
are error-driven. In the basic RW model, any cue that is
present in the stimulus will have its associative weights
changed whenever there is an erroneous prediction. There

is no mechanism of shifting attention whereby the differ-
ent cues can participate more or less in accounting for the
error. For example, if a cue is present in two different tri-
als with different outcomes, then the cue must be attended
to in both trials, and associative learning must accommo-
date the conflicting outcomes. In the particular experi-
mental design used here (see Fig. 1), this property of the
RW model implies that the cue, I, shared by stimuli I+PE
and I+PL, will eventually be associated about equally
with the two response categories, rather than unequally as
demanded by the human data.

The configural connectionist model of Pearce (1994)
also does not incorporate selective attention and also can-
not accommodate the human data. In the Pearce model,
there are configural nodes that mediate the mapping from
input cues to output responses. Importantly, these config-
ural nodes are recruited so that they exactly copy all the
cues presented on a given trial, with no differential selec-
tive emphasis of individual cues within a configuration.
The Pearce model does have a form of attentional capac-
ity constraint expressed as activation normalization, but
the model does not have any selective attention shifting.
The Pearce configural model cannot, therefore, exhibit the
preferences shown by humans for stimuli I and PE+PL,
but it does predict the pattern of results shown by ba-
boons.

Kruschke (1996a) reviewed several other models of
human categorization that have attempted to account for
the type of phenomenon addressed here. These models in-
cluded the component cue model of Gluck and Bower
(1988), the attentional connectionist model of Shanks
(1992), the context model of Medin and Schaffer (1978),
the generalized context model of Nosofsky (1986), the
ALCOVE model of Kruschke (1992), and the rational
model of Anderson (1991). All of these models failed be-
cause they do not implement stimulus-specific attention
shifts.

An extension of the RW model that includes shifting
attention has been shown to address effects of phased
training and base rates on category learning in humans
(Kruschke 1996a). The model, called ADIT, formalizes
two simple ideas: People learn about what they attend to,
and they attend to cues that minimize interference with
prior associations. ADIT builds associations between cues
and outcomes in two corresponding steps on every trial:
First, attention to cues is shifted on a trial-by-trial basis,
so as to reduce error in prediction. In this step, attention is
shifted to reduce interference with prior associations, i.e.,
attention is directed away from cues that are already asso-
ciated with conflicting outcomes, and toward other cues
that are available for associating with the current out-
come. Second, once attention has shifted, associative
weights are adjusted to further reduce any remaining error
between the prediction based on the attended-to cues and
actual outcome. This second step is identical to the basic
RW model, using only attended-to cues instead of all pre-
sented cues. Thus, ADIT reduces to a form of the RW
model when the rate of attention shifting is fixed at zero.
After providing a detailed description of the model, we
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will show that ADIT can fit both the baboon behavior and
the human behavior, and the fit to baboon behavior is best
when attention shifting is set to zero.

Formal description of ADIT

ADIT can be construed as a connectionist network in
which each input node represents a cue and each output
node represents a categorical response. To model this ex-
periment, the network has five input nodes, corresponding
to the five cues, and three output nodes, corresponding to
the three response categories. When the ith cue is present,
input node i has activation ai = 1, otherwise it has activa-
tion zero. When the kth category is the correct response,
the kth output node receives a “teacher” value of tk = 1,
otherwise it has teacher value zero1

Each input node is gated by an individual attention
strength, which simply amplifies or attenuates the input
node activation via multiplication. When a stimulus is
presented, all activated nodes are initially attended to
equally. There is a capacity constraint on the total atten-
tion, so that as more cues are presented, less attention can
be allocated to each one. If the stimulus has N cues, then
the initial attention given to each cue is α = 1/N(1/η), where
η > 0 and is a freely estimated parameter that expresses
the attentional capacity. This causes the normed total at-
tention, (Σi αi

η)1/η, to be equal to 1. If η is small, then in-
creasing the number of cues reduces the attention per cue.
If η is large, then increasing the number of cues has rela-
tively little effect on the attention per cue.

Between input node i and output node k is a connection
with associative weight wki. The associative weights are
initialized at zero, but gradually learn according to the
delta-rule described later. When a stimulus is presented,
the input nodes are activated, attention is allocated to the
activated nodes, and then activation spreads to the output
nodes via the weighted connections, with output activa-
tion given by:

ak = Σiwkiαiai

The output node activations are converted to choice prob-
abilities so that the probability of response K is given by:

p(K) = exp(φaK)/Σkexp(φak)

where φ is a freely estimated constant that determines the
“decisiveness” of the network. A large φ causes the most
activated output node to garner a large choice probability
at the expense of other partially activated response nodes.
A small φ causes even slightly activated responses to be

chosen with probability nearly as large as highly activated
responses.2

After the network makes its initial prediction, the
teacher values are delivered to the output nodes, just as
feedback is delivered to experimental subjects. The atten-
tion strengths are then redistributed to reduce the error, E,
across the output nodes, which is measured as:

E = 0.5Σk(tk – ak)2

The primary goal of learning is error reduction, and the
first reaction to the error is a rapid shift of attention away
from cues that cause error and toward cues that reduce er-
ror. In ADIT, this shift of attention is accomplished by
gradient descent on the error with respect to the attention
strengths, which yields the following equation for shifting
attention:

∆αi = σΣk(tk – ak)wkiai

where σ is a freely estimated constant of proportionality,
called the attention shift rate. If the shift causes an atten-
tion strength to take on a negative value, then the value is
set to zero because negative values might not have a clear
psychological interpretation. After the attention strengths
are shifted, they are renormalized by dividing each by:

(Σiαi
η)1/η

This renormalization respects the capacity constraint on
attention.

With the model now having determined which cues to
attend to, the cue activations are propagated again to the
output nodes and a new error is computed. The associa-
tion weights are then adjusted to reduce this remaining er-
ror, with the change in weights given by:

∆wki = λ(tk – ak)αiai

where λ is a freely estimated constant of proportionality,
called the weight learning rate. This learning rule is for-
mally equivalent to the learning rule in the original RW
model, except that Rescorla and Wagner proposed that the
learning rate for reinforced trials could be greater than the
learning rate for non-reinforced trials. In the present for-
malism, this means that the learning rate takes on one
value, λ, for output nodes with tk = 1, and a different value
β ≤ λ, for output nodes with tk = 0.

In summary, when stimulus cues are presented to
ADIT, they are initially all attended to equally, and acti-
vation propagates from the cues, weighted by attention, to
the category nodes. Corrective feedback is then supplied,
and attention rapidly shifts away from cues that cause er-
ror and toward cues that reduce error. This shifting of at-
tention constitutes reduction of interference between prior
knowledge and new learning, because attention is shifted
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1 The “shift” and “no-shift” versions of ADIT implemented here
actually used “humble” teachers, for which an activation more ex-
treme than the zero or one teacher value does not generate an error
(see Kruschke 1996a). Humble teachers turn out to have little in-
fluence on the model fits; in fact, they improve the fits of the two
versions of ADIT slightly but not significantly

2 The original version of ADIT also mixed category base rates with
the output probabilities. This is not done here, primarily because
the original base rate learning mechanism was ad hoc and is inap-
propriate for the present application. Moreover, the models fit the
data here without considering base rates



away from exactly those cues that cause interference with
prior knowledge. Any remaining error is used to drive
changes in the associative weights. The no-shift version
of this model, which is equivalent to the RW model, is
simply the special case in which the attention shift rate is
fixed at zero, and the associative weight learning rate for
absent categories is allowed to differ from the associative
weight learning rate for present categories.

The “shift” version of ADIT has four freely estimated
parameters: the learning rate for the association weights,
the decisiveness constant for mapping output activations
to response probabilities, the attentional capacity con-
stant, and the attention shift rate. The no-shift version of
ADIT also has four freely estimated parameters: the atten-
tion shift rate is fixed at zero but the associative learning
rate for absent categories is free.

Measure of fit

The model was fit to the empirical response frequencies
for each test-phase stimulus. The fit of the predictions to
the data was measured using a log-likelihood statistic, G2

= 2Σifiln(fi/mi) where fi is the empirical response fre-
quency in cell i, mi is the predicted response frequency in
cell i, and the sum is over all cells in the response fre-
quency table (Wickens 1989).

Parameter value search method

Best-fitting parameter values were found using simulated
annealing (e.g., Goffe et al. 1994). Simulated annealing
randomly checks many thousands of parameter value
combinations, and gradually increases the density of
search in regions of parameter space with the best fit. We
can be fairly confident that the resulting best fits are very
nearly the global optimum in the searched range of pa-
rameter values. As an additional check, gradient-descent
search was also performed from a number of different
starting values.

Fit results

Best fit of ADIT to the baboon data

The two baboons’ mean response frequencies in the test
phase (see Table 1) were fit. For each of the seven stimuli
in the test phase, there were two possible responses, E or
L, thereby yielding 14 response frequencies to be fit. As
the total number of responses for a given stimulus was
fixed by the experimental design, the data included seven
independent frequencies.

The model was trained on 2388 blocks of four trials
(9552 trials) in phase 1, and 252 blocks of four trials in
phase 2 (1008 trials), which represents the approximate
mean training time of the two baboons. Phase 3 contained
20 blocks of 106 trials (2120 trials), with each block hav-

ing 24 occurrences of stimulus I+PE reinforced with re-
sponse E, 24 occurrences of stimulus I+PE reinforced
with response L, 24 occurrences of stimulus I+PL rein-
forced with response E, 24 occurrences of stimulus I+PL
reinforced with response L, one occurrence of each of the
five test stimuli reinforced with response E, and one oc-
currence of each of the five test stimuli reinforced with re-
sponse L. The results of two random training sequences
were averaged to obtain the model predictions.

It turned out that an excellent fit to the baboon data
could be obtained without use of a separate learning rate
for absent categories (that is, β = λ). Moreover, the atten-
tional capacity constraint was also unneeded (η = 100.0,
the maximum permitted value). The best fit was obtained
with φ = 1.22 and λ = 0.637, which yielded G2(df = 5) =
0.88, an excellent fit. The predictions of the “no-shift”
version of ADIT are shown in Table1. The model shows
indifferent responses to stimuli I and PE+PL, just as ex-
hibited by the baboons (but not by the humans).

Best fits to the human data

The nine humans’ mean response frequencies in the test
phase (see Table 1) were fit. Just as with the baboon data,
for each of the seven stimuli in the test phase there were
two possible responses, E or L, thereby yielding 14 re-
sponse frequencies to be modeled. As the total number of
responses for a given stimulus was fixed by the experi-
mental design, the data included only seven independent
frequencies. The two version of ADIT (“shift” and “no-
shift”) each have four estimated parameters, leaving three
degrees of freedom. The models were trained for 55
blocks of four trials (220 trials) in phase 1, and 24 blocks
of four trials (96 trials) in phase 2, representing the ap-
proximate mean training time of the human participants.

The best fit of the “no-shift” version of the model to
the mean human data is quite poor, with best-fitting pa-
rameter values of φ= 6.44, λ = 0.0913, and η = 0.875, and
β = 0.594, which yielded G2(df = 3) = 225.4. Thus the no-
shift version of the model can be rejected with extremely
high confidence. The model predicts indifferent responses
to stimuli I and PE+PL, contrary to the human data.

The fit of the “shift” version of ADIT to the human
data is excellent. The best fit, with φ = 6.65, λ = 0.0337, 
σ = 0.213 and η = 6.69, yielded G2(df = 3) = 2.78.
Predictions are shown in Table 1, where it can be seen that
responses for stimuli I and PE+PL, in particular, are very
close to the empirical values.

ADIT achieves this fit by shifting attention away from
the shared cue I when learning category L. By the end of
training, the associative weight from the shared cue to cat-
egory E remains much higher than the associative weight
from the shared cue to category L. The associative
weights from the distinctive features, PE and PL, are also
noticeably asymmetric.
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Model fit summary

The baboon data can be accurately fit without any atten-
tion shifts. The human data, on the other hand, can be ac-
curately fit by ADIT only with attention shifts. When at-
tention shifting is constrained to be zero, the model can-
not reproduce the response preferences shown by humans,
even when it is provided with separate learning rates for
present and absent categories. Insofar as the attention
shifting mechanism in ADIT is critical to account for the
human data, we have additional evidence that comparable
attention shifting is indeed occurring in human learning.

General discussion

The current study compared category learning in humans
and baboons using a task derived from the work of
Kruschke (1996a). Consistent with Kruschke (1996a), re-
sults from humans demonstrated that when two categories
that share a feature are learned successively, the shared
feature is associated with the earlier-learned category, and
the distinctive feature of the later-learned category is
strongly associated with the later category. In the terms of
Kruschke (1996a), this result suggests that, when learning
new associations, humans shifted their attention away
from the stimulus features already associated with a re-
sponse, and focused their attention on uncommitted dis-
tinctive features. This conclusion is confirmed by our mod-
eling, showing that ADIT with attentional shifting fits hu-
man data well. ADIT with zero attention shifting failed to
account for the human data, but fit the baboon data.

One obvious advantage of attentional shifting in the
context of our experiment is to protect previously learned
associations and to facilitate new learning. Humans are
remarkably proficient among animals in their ability to
rapidly learn arbitrary new associations without cata-
strophically interfering with previously learned associa-
tions. It is proposed, therefore, that attentional shifting
mechanisms are an important component of this ability.

Regarding the baboons, two main conclusions can be
drawn from their results. First, baboons changed their as-
sociations during the learning process. Second, baboons
selectively processed stimulus features, rather than exclu-
sively the stimuli as wholes. The first conclusion, regard-
ing changing associations, derives from the inspection of
transfer trials involving the imperfect predictor “I”.
Results showed that this elementary feature was not dif-
ferentially associated with either E or L during the test
phase, while it was more strongly associated with E than
with L early in training phase 2. The second conclusion,
regarding the selective processing of stimulus features,
derives from the test phase in which the elementary stim-
ulus features were presented individually or in novel com-
binations. If these novel combinations were processed as
compound wholes, then responses should have been at
chance level for the five transfer stimuli. Contrasting with
this expectation, responses to the test items PE and PL

differed from random choices, suggesting that these test
stimuli were associated to either E or L, although they
were never presented as such during the training phases.
Note also that the test items PE and PL were as strongly
associated with their respective categories as the typical
stimuli of E and L (see Table1), ruling out the possibility
that performance in the test phase reflected an effect of
stimulus generalization alone. Altogether, the results im-
ply that baboons processed the compound stimuli used in
this experiment as sets of elementary features, rather than
as compounds.

Baboons’ focusing on stimulus features might depend
on the experimental procedure and nature of stimulus con-
figuration, and it is likely that the use of other types of
stimuli, such as continuous bi-dimensional forms instead
of discontinuous pairs of forms, might have favored the
processing of the two stimulus dimensions. It should be
noted, however, that the processing of stimulus feature, as
opposed to compounds, has previously been observed in
baboons for both stimulus discrimination (e.g., Fagot and
Deruelle 1997; Deruelle and Fagot, in press) and catego-
rization tasks (e.g., Dépy et al. 1997). For instance, Fagot
and Deruelle (1997) presented the same baboons as in the
current study with large (i.e., global) forms made of
smaller forms (e.g., a large square made of small squares).
After presentation of these compound stimuli as samples,
the subject had to match the samples with comparison
forms by considering either the local or global stimulus
level. Results demonstrated a strong advantage (i.e.,
shorter response times) for processing the local aspects of
the stimulus compared to global processing.

In other animal species, such as birds, rodents and fish,
Mackintosh (1969) argued that results from probability
learning and from serial reversal shift learning could be
accounted for if subjects learned to selectively attend to
relevant cues, and if this selective attention was learned to
different degrees by different species. Mackintosh (1969)
argued that “The simplest explanation ... of the behavioural
differences between rat, bird and fish, is to suggest that
the three classes of animal differ in the extent to which
they can learn to attend to a given cue ...” (pp. 148–149).
Our experiment and modeling demonstrate that baboons
and humans also differ in their ability to rapidly shift at-
tention among cues, suggesting that differences in selec-
tive attention may account for a broad range of species
differences in learning and behavior.
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