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and differential relations to working memory capacity (assessed
by backward digit span). These results illustrate the heuristic value
of statistical modeling to reveal the behavioral and cognitive vari-
ability in the temporal dynamics of children’s cognitive functioning.
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Cognitive development has long been conceived as a stage-like progression toward increasing cog-
nitive efficiency and maturity, as best illustrated by the large influence of Piaget’s theory. According
to stage theories, development consists of a universal progression through the same stages. At each
stage, most or all children use the same processes and strategies. Yet, both within- and between-group
variability in strategies is psychologically plausible. In most domains of development, recent research
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has moved away from stage views and emphasized instead both intra- and inter-individual differ-
ences (Siegler, 1997). Exploring cognitive variability in any domain of cognitive development requires
adequate methodological instruments. Here we argue that computational statistical modeling, more
precisely finite mixture of autoregressive generalized linear models (GLMs; Lindsey, 1997), can pro-
vide new insights into cognitive variability, which we illustrate by examining the variability in the
cognitive strategies that preschoolers use to update goal representations in a set-shifting task that
assesses executive control.

Classical statistical frameworks (e.g., analysis of variance) generally are characterized by a sub-
stantial gap between the theoretical representations of the targeted psychological processes and the
statistical hypotheses that are actually tested because these frameworks are almost always based on
aggregated data at the group level while psychological processes occurred at the individual level. In
contrast, statistical modeling bridges this gap by estimating parameters at the individual level; these
parameters directly reflect cognitive processes and thus can be interpreted more straightforwardly
in terms of cognitive functioning. GLMs offer a wide range of very flexible tools to investigate psy-
chological processes. They also provide the opportunity to address several theoretical issues within a
single analysis, reducing the risk of hidden effects due to data aggregation. For instance, in our study
this type of modeling allowed us to test our main theoretical questions within a single model using
one set of parameters for each question, whereas several distinct analyses would have been necessary
using a classical statistical framework.

Statistical modeling offers the possibility of exploring individual differences in depth. Models based
on latent classes identify groups based on their response profiles. When one examines variability in
cognitive processes or strategies, expected individual differences are more qualitative than quanti-
tative. In such cases, individual response profiles are not ordered along a continuum. Because latent
class models handle a priori unknown qualitative differences among groups of individuals, they are
especially well-suited to explore individual differences. Models that combine the flexibility of GLMs
with the possibility of revealing latent classes are known in the statistical modeling literature as finite
mixture of generalized linear models (Griin & Leisch, 2008) or variance components GLM (Aitkin,
1999). Their main principle is that the relations that exist among multiple variables in a dataset often
are more accurately characterized by multiple regression models with different parameter values,
fitted to different latent subgroups of individuals, relative to a single set of parameter values for the
entire sample. In addition, these regression models can be built to reflect the temporal dynamics of
cognitive processes (e.g., with age, across experimental sessions or even across trials within a session),
which is done through an autoregressive term that uses the current state of the cognitive system as an
explanatory variable to predict the next state of the system (Aitkin & Alfo, 2003). This methodology is
a powerful tool to study behavioral and cognitive variability both between and within subjects. Here
we illustrate the heuristic value of such statistical models in the context of children’s executive control
and, more specifically, goal updating strategies in set-shifting situations.

Executive control refers to the intentional and goal-directed regulation of one’s own thoughts and
actions. It allows one to orient attention toward goal-relevant information and appropriate behaviors.
Executive control is required, and can be exerted, only if one has a specific goal to achieve. For instance,
children can orient their attention to the information relevant to solve an arithmetic problem only
if they intend to solve this particular problem. Forming a representation of the relevant task, that is,
deciding about the relevant task goal, is challenging for preschoolers especially when tasks constantly
change, as is the case in task-switching situations, such as the Advanced Dimensional Change Card Sort
(Advanced DCCS), where children have to switch between matching a bidimensional stimulus with
response options by color or shape as a function of task cues (e.g., a star beside the stimulus signals
that color is relevant while a square means shape is relevant; Zelazo, 2006). Consistently, recent evi-
dence suggests that set-shifting development is largely driven by improvement in goal representation
(Chevalier & Blaye, 2009; Marcovitch, Boseovski, & Knapp, 2007; Morton & Munakata, 2002; Snyder
& Munakata, 2010).

Thus far, research has begun to uncover the processes underlying goal representation in situations
in which children are provided with some environmental information, such as task cues (Blaye &
Chevalier, 2011; Chevalier & Blaye, 2009; Chevalier, Wiebe, Huber, & Espy, 2011), response feedback
(Chevalier, Dauvier, & Blaye, 2009), or common stimulus features (Snyder & Munakata, 2010). How do
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preschoolers determine when and what goal to switch to when no external goal-related information is
provided and they must rely exclusively on internal cues? Such situations are frequent in preschools,
where children often receive series of instructions about tasks to perform successively. Such tasks are
frequently used to assess set-shifting in older children and adults (Kiesel et al., 2010; Vandierendock,
Liefooghe, & Verbruggen, 2010). For instance, in the alternating-runs version of the task-switching
paradigm (Rogers & Monsell, 1995), participants are presented with no task cues and instructed to
follow a predetermined and predictable task sequence (e.g., switch on every other trial: task A, task
A, task B, task B, etc.). Without external cues, goal representation may especially tax endogenous
processes. Indeed, in adults switch costs (i.e., the performance decrement between trials where the
task repeats and trials requiring a task switch) observed in the alternating-runs paradigm are larger
than those observed with task cues (Altmann, 2007).

When no external cues are available, the relevant task goal can be updated in working memory by
keeping track of the current position in the task sequence, which likely requires memorizing and using
the information related to the immediately preceding trials (e.g., if task A has just been performed
twice, task B is now relevant). Further, the difficulty of updating the task goal may change across
trials. As one moves across trials, the clear indication about the task to start with probably becomes
less informative for the current trial (Altmann, 2004). Most importantly, memory traces related to
prior trials accumulate progressively (although their activation likely decays with time). Therefore,
interference increases as trials accumulate, making it harder to use the information of the most recent
trials to keep track of the current position in the task sequence and update the task goal accordingly.

If performance relies on maintenance and use of previous trial information, it may vary as a function
of working memory capacity. The role of working memory is all the more probable, since working
memory is involved in task goal updating and maintenance in both adults (Baddeley, Chincotta, &
Adlam, 2001; Emerson & Miyake, 2003; Saeki & Saito, 2004a, 2004b, 2009) and children (Marcovitch,
Boseovski, Knapp, & Kane, 2010; Morton & Munakata, 2002). Children’s ability to update task goals on
switch trials and maintain the same goal on no-switch trials should thus relate to working memory.
Moreover, individual differences in working memory may not only relate to quantitative differences
in task goal updating (e.g., number of errors) but also to qualitative differences in updating strategy.
In particular, children with high working-memory may have enough working memory resources both
to store the information about the tasks performed on the previous two trials and to decide on the
relevant task goal. They also may successfully resist increasing interference across trials. In contrast,
children with low working memory capacity may not have enough resources to update task goals on
the basis of previous trial information and hence be more likely to either perseverate on a single task
or switch tasks in a random fashion.

The issue of strategy differences relates to the variability of flexible behaviors (or lack thereof) and
underlying strategies across children. Indeed, substantial variability occurs both within and between
age groups. For instance, preschool children commit multiple types of errors in task-switching sit-
uations that offer more than two response options, indicating response variability at the behavioral
level (Chevalier & Blaye, 2008; Dedk, 2000). Preschoolers also show variability at the cognitive level;
some perseverate at the level of task dimensions while others do so at the level of specific stimulus
features (Hanania, 2010). Finally, variability is observed between age groups. Age differences in fix-
ation patterns (Chevalier, Blaye, Dufau, & Lucenet, 2010) and distinct neural networks observed in
the Advanced DCCS (Morton, Bosma, & Ansari, 2009) are suggestive of age differences in cognitive
strategies.

The heterogeneity of performance (and related cognitive strategies) often is inadequately captured
by traditional scoring methods and statistical analysis. For instance, chance-level mean performance in
the Advanced DCCS (50% correct with two responses options) may reflect random responding, random
switching, or perseveration on the same task across all trials. Similarly, a switch-cost reduction may
reflect different processes depending on whether it is due to a performance increase on switch trials
or decrease on repetition trials. Therefore, it is important to go beyond mean performance and classify
children in groups of homogeneous response profiles in order to better reveal behavioral and cognitive
variability.

The present study illustrates the usefulness of computational statistical modeling for studying
cognitive development, by exploring preschoolers’ variability in goal updating strategies in a situation
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where goal representation is entirely endogenously driven. To this end, 5-6-year-olds completed an
alternating-runs version of the Advanced DCCS (they had to match bidimensional stimuli with one of
two possible response options by either shape or color on the basis of a task sequence that required
switching on every second trial, e.g., color, color, shape, shape, etc.), and a backward digit span task. We
addressed three main questions. (1) What strategies do children use to determine the relevant task goal
and when to update or maintain it on the basis of the task sequence? Do these strategies vary across
children? (2) Does performance change across trials? In particular, does strategy difficulty increase
across trials because of the accumulative interference created by previous trials? (3) To what extent
does goal updating depend on working memory, and is working memory associated with cognitive
strategy use?

1. Method
1.1. Participants

Participants were 79 5-6-year-olds (M =70.8 months, SD = 3.3 months, range = 65-77 months, 43
girls). One additional child was eliminated because she did not follow instructions. Children were
recruited from two preschools in a small town in France. Most were Caucasian and came from middle-
to upper-class backgrounds.

1.2. Materials and procedure

Participants were tested individually in a quiet room at their preschool. All children completed an
alternating-runs version of the Advanced DCCS and a backward digit span task. Children completed
these tasks, along with others not reported here, in two sessions of about 30 min each, one week apart.
The order of the two tasks was counterbalanced.

1.2.1. Advanced DCCS

The Advanced DCCS (Zelazo, 2006) was administered on a laptop computer (15-in. monitor HP
Compaq nx9000) and run with E-Prime® (Psychology Software Tools, Pittsburgh, PA, USA). Children
had to respond by pressing one of two keys (corresponding to the ‘q’ and ‘p’ keys of a QWERTY key-
board). The remaining keys were masked. On every trial, children had to match a stimulus picture
with one of two response pictures on either color (color game) or shape (shape game). Two pictures of
different colors and shapes (e.g., a blue boat and a red rabbit), were displayed at the top of the screen
one at a time. Each response picture matched each stimulus on either color or shape (e.g., a red boat
and a blue rabbit). Both response pictures remained visible throughout the task and were displayed
on the two bottom corners of the screen. Pictures were about 6 cm x 6 cm. Each participant completed
a version of the task with one of 4 combinations of colors and shapes. Every trial started with a fix-
ation cross followed by a stimulus that remained on screen until a response was entered. Then the
stimulus was moved to the side of the response given for 500 ms, to emulate putting cards into boxes
as in the card version of the Advanced DCCS, and the next trial initiated. Pace was controlled by the
experimenter.

Children were told that they would see pictures and would play either the color game or the shape
game. In the color game, they were instructed to press the key under the bottom picture of the same
color as the top picture. In the shape game, they were instructed to press the key under the bottom
picture of the same shape as the top picture. Children were asked to respond as quickly and accurately
as possible. They started with two simple blocks in which they had to consistently play the color game
or the shape game (order counterbalanced). The simple blocks were used for familiarization. Each
simple block consisted of 5 training trials (repeated if children committed more than two errors) and
10 test trials. The experimenter helped children on training trials if necessary but not on test trials.

Children were then told they would now play the two games at the same time and proceeded to
the mixed blocks, where they were expected to alternate between color and shape matching on every
second trial. The alternating rule was explained as follows: “Now we’re going to play both the Color and
Shape Games. You'll play the Color Game twice, and then you’'ll change and play the Shape Game twice, and
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then twice again the Color Game, and twice again the Shape Game, and so on. So you'll play the same game
twice and then change games. You'll do, for instance, color-color, shape-shape, color-color and so on.” Pilot
testing suggested that children understood these instructions.

Six demonstration trials were administered. The task sequence was repeated and children were
instructed to start with one dimension (counterbalanced across blocks and children) and completed
20 test trials (first mixed block), after which they took a short break. Then they were repeated the task
sequence and the game to start with and completed another 20 test trials (second mixed block). No
feedback was provided on test trials.

One property of the alternating-runs version of the task-switching paradigm is that the correct
task on a given trial depends on the two previous responses. Therefore, the outcome variable must
adequately capture this temporal dynamic. To this end, we used a binary outcome variable (Switch)
to code responses. The value 0 meant that the given response corresponded to a task repetition (rel-
ative to the previous trial), whereas the response was coded 1 when the response denoted a task
switch. The correct response pattern was 1 after 0 (correct task switch after a repetition) and 0 after 1
(correct repetition after a switch). For example, in the response pattern CCSSCSSCC, S and C indicate
the selection of the response that matches the stimulus shape and color. These responses would be
coded 01011010 on the Switch variable, which corresponds to four switches and four repetitions. The
first underscore denotes the fact that the first response cannot be coded (it is neither a switch nor a
repetition). The second of the two consecutive “1s” in the middle reflects an unexpected switch.

The outcome variable Switch was used in the model to study the behavioral dynamics but it did
not directly provide an index of accuracy. To validate the output of the model, an additional accuracy
variable (Acc) was computed as follows: A switch following a non-switch and a non-switch following
a switch were considered correct and coded 1, whereas a switch following another switch or a non-
switch following another non-switch were considered inaccurate and coded 0. The first response of
each block could not be coded. Our previous example (CCSSCSSCC) would be coded 11110111 on Acc,
corresponding to seven correct responses and one error (color should have been repeated on the 6th
trial).

Our scoring method assumes that the observed response directly reflects the task the child intended
to perform on any given trial (i.e., the goal representation that was active when the response was
entered). However, at times, children may fail to select the response corresponding to the task they
intend to perform (i.e., the active goal). In such cases, responses do not match the intended task.
Such response selection errors may reflect response inhibition errors because children may have
selected either the last response associated with a stimulus (if perseveration occurred at the level
of stimulus-response associations) or the motoric response that was performed on the previous trial
(if perseveration occurred at the motor level). The latter seems improbable given that 5- and 6-year-
olds show high performance levels in simple blocks that also require switching motoric responses
(Chevalier & Blaye, 2009). It remains possible that selection errors at the level of stimulus-response
associations occurred; however, there is no reason to expect the frequency of these errors to be influ-
enced by the task sequence or to change as children progress across trials. Therefore, response selection
errors should not affect differences in response profiles across trials.

Response times (RTs) were also assessed. RT outliers (<300 ms or >10,000 ms) were trimmed,
resulting in1.7% of RT values being discarded.

1.2.2. Backward digit span task

Verbal working memory was measured with the backward digit span task. Children were told they
would hear a series of digits that they would have to repeat in a backward fashion. Two demonstration
series with two digits were administered, providing feedback and guidance as needed. Then children
moved to the test series. Digits were pronounced at the pace of one digit per second. Children started
with two test series, each containing two digits. If children correctly responded to at least one of these
series, they were administered two series containing one additional digit. Series length progressively
increased up to 8 digits or until the child incorrectly responded to both series of any given length, at
which point the task was discontinued. Following Case, Kurland, and Goldberg (1982), scores consisted
in the highest series length that children reached (correct responses to both trials) plus 0.5 point per
additional correct response.
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1.3. Model specification

A binomial model, specifically dedicated to binary outcome variables, was used in order to work at
the response level, without preliminary aggregation, and to examine within-subject changes across
trials. Given the need for a statistical instrument appropriate for a binary outcome variable that allows
the value at time t to depend on the value at time t — 1, generalized linear model (Lindsey, 1997) was
used. It is a wide class of models that encompasses, among other techniques, analysis of variance,
regression and, logistic regression. The temporal relation between a given response and the previous
one was handled by an autoregressive term that computes the probabilities of a switch after a switch
and after a repetition, by using responses at time t — 1 as an explanatory variable to predict responses
at time t. Of interest for the present study, GLM also offers the possibility to test main effects and
interactions between categorical and quantitative explanatory variables.

The binary outcome variable (Switch) was used to statistically model the probability of a task
switch on any given trial as a function of the following explanatory variables. The first explanatory
variable (PrevSwitch) was the status of the previous response (i.e., task switch or repetition). Second,
as interference was expected to grow as a function of trial number within a block, trial number was
also taken into account as an explanatory variable (Trial). A third explanatory variable (Block) was
the mixed block of trials (block 1 vs. block 2) that could have an influence because the break and
instruction repetition between the two blocks may lower interference and/or help children further
understand task instructions. Thus, in the model the probability of a switch was supposedly influ-
enced by the previous response, trial number and the block, that is, a binary variable, a numerical
variable and a categorical variable. Interactions between these three explanatory variables were also
tested.

Qualitative differences across children, potentially reflecting different strategies, were investigated
using models that combine the flexibility of GLMs with the possibility of revealing latent classes: finite
mixture of generalized linear models (Aitkin, 1999; Griin & Leisch, 2008). In these models, several
regression equations are fitted to the same dataset, yielding a different set of parameters for each group
(or latent class) of subjects identified during the estimation procedure. In this model, we obtained
eight parameters for each class of subject. Children with homogeneous responses profiles are grouped
together. The final number of classes is defined by comparing the goodness of fit across a series of
models with an increasing number of classes.

GLM with latent classes often yields a large set of parameters because the number of parameters
corresponds to the number of explanatory variables and interaction multiplied by the number of latent
classes. Such a large set of parameters can be challenging to interpret. To circumvent this problem,
we took advantage of the model’s capacity to compute predictions, as in any regression model, and
to build graphical representations of the typical response pattern observed in each latent class. The
latent classes were then compared on response times (RTs) which were analyzed using GLM with
mixed effects, allowing us to plot the typical RT pattern for each latent class. Finally, a multinomial
regression model (Faraway, 2005) was used to explore the link between working memory capacity
and latent classes.

2. Results
2.1. Model fitting

The number of classes was determined by comparing the goodness of fit across models with an
increasing number of classes. Models with more classes describe the data in further detail and show
lower negative log-likelihood, but they are less parsimonious and have more degrees of freedom. When
both precision and parsimony were taken into account with the Akaike Information Criterion (AIC,
Akaike, 1974), the model with five classes (M5) was the best (Table 1). The results of a finite mixture
model indicate, for each participant, the probability of belonging to each class. Six participants were
not clearly classified in one of the five classes; their highest probabilities were below 0.80. They were
nevertheless classified in their most likely class.
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Table 1

Goodness of fit of the finite mixture of generalized linear models.
Model Number of classes DF —2 log likelihood AIC
M2 2 16 2912 2944
M3 3 24 2813 2861
M4 4 32 2748 2812
M5 5 40 2723 2803
M6 6 48 2715 2811

Note. The lowest AIC (Akaike, 1974) corresponds to the best-fitted model regarding both likelihood and parsimony. The degrees
of freedom of the models correspond to their numbers of parameters: Eight times the number of classes.

Table 2
Probabilities of a switch and their slopes within each block in the model with five classes.
N Mean probability of a switch after a repetition/a switch
Block 1 Block 2
Class 1 8 0.06/0.34*(p=0.003) 0.001/0
Class 2 12 0.07/0.30* (p=0.002) 0.25/0.28
Class 3 38 0.57/0.16* (p<.001) 0.54/0.08*(p <.001)
Class 4 11 0.92/0.05* (p<.001) 0.96/0.08" (p<.001)
Class 5 10 0.36/0.23 0.99/0.24* (p<.001)

Note. Probabilities in bold were significantly different (|t|>2) from each other in the block.

Table 3
Descriptive statistics by class.
Switch % RT median Accuracy M
Block 1 Block 2 Block 1 Block 2 Block 1 Block 2
Class 1 10 3 1153 1149 0.13 0.03
Class 2 11 26 1143 1030 0.15 0.38
Class 3 41 37 1967 1799 0.68 0.67
Class 4 49 51 1859 2036 0.93 0.94
Class 5 33 57 1558 1438 0.52 0.87
Total 34 36 1647 1550 0.56 0.62

Note. The percentage of switch was computed on all trials. A perfect response pattern contains 50% of switches (but 50% switches
do not necessarily denote perfect responding as switches and repetitions need to alternate regularly).

The five classes were significantly different from each other. The mean probabilities of a switch
for each class in the model with five classes (M5) are given in Table 2.! Two of these probabilities
significantly changed within a block. In class 3, the probability of a switch after a repetition decreased
during the second block (slope =-0.1, p<0.05), indicating that performance worsened across trials
within block 2. The same phenomenon was observed in class 5, but within the first block (slope =—-0.12,
p<0.05). The other slopes were not significantly different from 0. For each class of children, observed
accuracy, percentage of switches, and RTs are provided in Table 3.

RTs were investigated using generalized linear mixed effect model (GLMM, package Ime4 in R,
Bates, 2011). Observed RTs were log transformed and a normal distribution with identical link func-
tion was used. Subject’s class, revealed by the finite mixture model based on responses, was added
in the dataset as a new categorical variable called Class to compute its interactions with the three
explanatory variables: the block (Block), the previous response (switch or repetition, PrevSwitch), and

1 The estimated parameters were initially expressed in the form of the linear term given by the regression equation. They are
transposed in probability using the logistic function for an easier interpretation in Table 2. The logistic function or inverse-logit
is: logit ™' (@) = (2B
The equation used in R was 1ogRT ~ (PrevSwitch + Trial + Block): Class + Class +(1|Subject) — 1. This formulation facilitates com-

parisons across classes.
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Table 4
Reaction times (in milliseconds) estimated by the GLMM for each class.
Mean RT after a repetition/a switch RT switch cost? Slope of RT Between blocks
within a block variation in RT
Block 1 Block 2
Class 1 1199/1538 1229/1577 —343" 0.002 34
Class 2 1232/1367 1036/1149 -124 0.004 -207"
Class 3 2169/1816 1959/1640 336 0.0006 -193°
Class 4 2166/1753 2303/1865 425 0.007 124
Class 5 1636/1351 1497/1236 273" 0.0003 -127

Note. Reaction times were estimated at the middle of a block (trial 10.5). Values in bold (and flanked by a star) are significantly
different from zero (|t| > 2).

2 Due to the exponential transformation, the switch cost expressed in millisecond is slightly different in block 1 and in block
2 (differences lower than 30 ms), whereas there was no Block x PrevSwitch interaction in the model. The mean of the two values
are provided in the column RT switch cost for convenience.

the trial number within the block (Trial). Other models including interaction effects among Block, Pre-
vSwitch, and Trial were also tested, but no significant interactions were found. The model reported
here estimated RT values after a switch (i.e., when a repetition is expected) and after a repetition (i.e.,
when a switch is expected) for each block, and the slope of RT as a function of trial number for each of
the five classes given by M5.

Table 4 provides estimated RTs (in milliseconds) after an exponential transformation to facilitate
interpretation and highlight significant within-class variation and slope values. Global between-class
differences were also tested by comparing models with and without Class as explanatory variable. This
comparison revealed a significant effect of class, likelihood ratio test, y2(4)=33.7, p<0.01.

2.2. Profile interpretation

For each profile (class), Fig. 1 provides the estimated probability of a switch after a switch or after
arepetition, as well as the slopes of these probabilities in each block. The most likely response pattern
was computed by assuming that a switch occurred if its probability was higher than 0.5. It was used
to plot estimated RTs in each block.

Class1 (“perseveration”) included 8 children who switched very rarely (6% of switches throughout
the task) especially in block 2 (3%). In block 1, a switch occurred more often after a switch (0.34,
see Table 2) than after a repetition (0.06), suggesting that those rare switches occurred in series. No
significant trend in the probability of a switch within a block was observed and the most probable
response pattern for this class was no switch at all. These children clearly showed a perseveration
profile. Consequently, RTs were relatively fast and constant across the two blocks. Surprisingly, a
significant repetition cost in RT (Table 4) was observed, due to a few observations that mostly occurred
at the beginning of the first block, where RTs could have been a bit longer. Alternatively, children may
have considered switches as errors, slowing down response on the next trial.

Class 2 (“random switch”) included 12 children. Like class 1 children, their level of accuracy was
very low (0.15). In block 1, they switched more often when a repetition was expected than when a
switch was required (0.30 and 0.07, respectively). In the second block, they switched more often (0.26)
and more accurately (0.38), but still below chance level. In this block, switches occurred as frequently
after arepetition as after a switch (0.25 vs. 0.28, Table 2), and did not yield any cost on RTs. Like class-1
children, their responses were fast and even significantly faster in block 2 than block 1 (-193 ms, see
Table 4). The probability of a switch never reached 0.5 despite increasing within block 2. Although
these children showed a perseveration profile in block 1, they seemed to use a random responding
strategy in block 2, which artificially increased their accuracy level and speeded up their responses.

Class 3 (“mainstream class”) was by far the most inclusive with 38 children. Several indicators
clearly showed that these children understood and followed the alternation rule. First, accuracy was
above chance level in both blocks (0.68 and 0.67). Second, the probability of a switch was significantly
higher after a repetition (i.e., when a switch was expected) than after a switch in the two blocks
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Fig. 1. Estimated probability of a switch and reaction time as a function of previous responses in blocks 1 and 2. The most likely
response pattern was computed for each class, assuming that a switch occurred if its probability was higher than .5.

(0.57 and 0.54 vs. 0.16 and 0.08). Third, RTs were slower after a repetition than after a switch (switch
cost in RT =336 ms). Fourth, the most likely response pattern showed an alternation of switches and
repetitions, except at the end of block 2. The performance in this class was nevertheless far from
perfect. In block 1, the probability of a switch after a repetition was 0.57. This means that in 43%
of cases, children did not switch when they were supposed to, whereas most expected repetitions
did occur (0.84 in block 1 and 0.92 in block 2). Responses were faster in the second block (—207 ms),
where the probability of a switch after a repetition decreased across trials (slope = —0.1, p <0.05), hence
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suggesting a speed/accuracy tradeoff. This probability was around 0.75 at the beginning of the block,
reaching a level below 0.5 at the end of the block (Fig. 1), hence reflecting a decrease in performance
across trials. This trend is consistent with the hypothesis of increasing task-goal updating difficulty
across trials due to growing interference from past trials.

The 11 children in class 4 (“efficient set-shifting”) performed the best. Their response pattern was
nearly perfect in both blocks. They showed a high accuracy level (0.93 and 0.94). Most task switches
and repetitions occurred in accordance with the alternation rule (Table 2, 92/0.05 in block 1, 0.96/0.08
in block 2). None of the slopes of these probabilities was significant, suggesting that accuracy did not
change across trials. Class 4 was the slowest (around 2 s), with the highest switch cost (425 ms). For this
class only, RTs increased across trials within blocks. These children handled increasing interference
across trials by slowing down responses to maintain accuracy. As in class 3 (“mainstream”), a speed-
accuracy trade-off was observed in class 4. However, unlike class-3 children, class-4 children favored
accuracy over response speed.

The fifth class (“strategy change”) included 10 children and was characterized by highly contrasted
profiles in blocks 1 and 2. Although the probability of a switch after a repetition was above 0.5 at
the beginning of block 1 (Fig. 1), it rapidly dropped across trials (slope=-0.12, p<0.05), and after
a few trials, a perseveration pattern emerged (the probability of a switch was smaller than 0.25 at
the end of block 1). Consequently, overall accuracy was at chance level for this block (0.52). In con-
trast, accuracy was much higher in block 2 (0.87). The probability of a switch after a repetition in
block 2 was 0.99, meaning that these children switched when needed. Meanwhile, the probability of a
switch after a switch (0.24) was significantly lower than after a repetition, but still relatively far from
0, reflecting a tendency to switch even when a repetition was expected (57% switches in block 2).
Despite clearly distinct accuracy patterns across blocks, RT patterns were surprisingly similar in the
two blocks: Responses were fast (around 1500 ms) with a significant switch cost (273 ms). No signifi-
cant interaction appeared between Block and PrevSwitch or Trial on RTs. We nevertheless computed a
separate GLM on the RT of class 5 to test for a specific interaction. This model showed no effect of Trial
but a significant interaction between PrevSwitch and Block, reflecting the virtual absence of switch cost
in block 1 (53 ms) but a significant switch cost in block 2 (578 ms, p<0.01), which is consistent with
a qualitative change between blocks.

2.3. Relation of response profiles to age, performances in simple blocks, and working memory

Table 5 provides descriptive statistics and correlations among performance on simple blocks,
mixed blocks, age, and working memory performance. Mean accuracy was very high on simple blocks,
with little individual variability. This ceiling effect probably explained the relatively low correlation
observed between the two simple blocks (r=0.282, p<0.05). Only the second simple block was corre-
lated with the two mixed blocks and Backward Digit Span performance (BDS; rs=0.20, 0.24, and 0.23
respectively, p <0.05 for the latter two). The two mixed blocks were highly correlated with each other
(r=0.69, p<0.01) and showed a substantial correlation with BDS (r=0.42, p<0.01 and 0.30, p<0.01).
There was no correlation between Age and performance in the Advanced DCCS and BDS, probably
because of the narrow age range (65-77 months).

Table 5
Descriptive statistics and bivariate Bravais-Pearson correlations of the performance in simple and mixed blocks, scores in the
backward digit span (BDS) and age.

M SD Simple 1 Simple 2 Mixed 1 Mixed 2 BDS
Simple 1 0.953 0.080 1
Simple 2 0.946 0.090 0.282" 1
Mixed 1 0.592 0.274 0.22 0.204 1
Mixed 2 0.656 0.267 0.127 0.241° 0.691" 1
BDS 2.139 0.747 0.089 0.228" 0.416" 0.298" 1
Age 70.91 3.324 —-0.097 -0.121 —-0.049 —-0.031 0.032

* p<0.05.
" p<0.01.
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Table 6
Mean score in the backward digit span task and simple blocks, age and parameters of the multinomial GLM by class.
Age Simple blocks BDS Model parameters
M SD Block 1 Block 2 M SD Intercept (p) Coefficient (p)
Class 1 72 3.63 0.96 0.912 1.88 0.79 DF=8 AIC=223
Class 2 7143 3.55 0.925 0.908 1.63 1 0.95(0.18) —0.31(0.28)
Class 3 70.5 3.41 0.95 0.95 2.24 0.55 —0.05 (0.48) 0.77 (0.08)
Class 4 71.91 2.98 1 0.99 2.64 0.64 —5.09 (0.01) 2.33(<0.01)
Class 5 70.22 3.23 0.94 0.95 2.05 0.8 —0.36 (0.39) 0.3(0.32)

Note. No parameter is estimated for class 1 because it serves as the reference class.

Using classes as an explanatory variable to predict performance in the simple blocks (comparison
of GLMs with a binomial distribution), we observed a significant effect of Class, x% (4)=21, p=0.0003,
but no significant differences between blocks and no significant Class by Block interaction. Children
in class 2 (“random switch”) performed the lowest in both simple blocks whereas children of class
1 (“perseveration”) encountered difficulties especially in the second simple block. These results are
compatible with the above profile interpretation. Classes did not differ in age.

The last model tested the relation between working memory and the probability of belonging to
each class. The explanatory variable was quantitative (BDS) and the outcome categorical (Class). In this
case, multinomial GLM is an elegant alternative to inverting the status of the variable in an ANOVA.
By comparing two models, with and without BDS as an explanatory variable, it is possible to test the
effect of BDS on the probability of belonging to each class. The likelihood ratio test of this comparison
was significant, x2 (4)=17.7, p=0.005, indicating a significant relation between BDS and Class. The
interpretation of the estimated parameters provided in Table 6 is not straightforward because the
influence of each coefficient depends on the values of the others, but they can be used to plot the
probability of belonging to each class as a function of BDS as shown in Fig. 2.

Most of the children with the highest working memory scores belonged to class 4 (“efficient
set-shifting”), which corresponds to the best performers in the Advanced DCCS. Children whose per-
formance was around the mean in BDS mostly belonged to class 3 (“mainstream”). At the bottom of
the BDS score range, we found children of class 2 (“random switch”). Classes 1 and 5 were seemingly
unrelated to BDS performance.
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Fig. 2. Probability of belonging to each class as a function of the score in the Backward Digit Span task (BDS). For any given BDS

score, the sum of the five probabilities is 1. Class 1="“perseveration”. Class 2 =“random switch”. Class 3 = “mainstream”. Class
4="efficient set-shifting”. Class 5 = “strategy change”.
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3. Discussion

We used statistical modeling to examine children’s strategies underlying task goal updating in an
alternating-run version of the Advanced DCCS. The results revealed five distinct response profiles that
differed in how performance (i.e., switch probabilities) changed across trials and blocks. These profiles
were associated with distinct patterns of response times and working memory scores, but did not vary
with age (within a small 12-month age range). In all, these results point to substantial variability in
the strategies that support goal representation updating for flexible behaviors, although inference
about the exact nature of those strategies is speculative and awaits confirmation by experimental
manipulation.

Statistical modeling using a mixture of generalized linear models and generalized linear mixed
model, provided in widely available packages, allowed a fine-grained study of behavioral dynamics
both within subjects across trials and across blocks, and between subjects. Further, it highlighted
qualitative differences between classes of children, making it a valuable instrument to study strategy
variability. This modeling approach allows parallel analysis of response accuracy and RTs, as well as
insightful graphical representation of behavioral variability, and combines goodness of fit and parsi-
mony to determine the most appropriate number of classes to describe a sample of data. The number
of classes obtained, however, can depend on the amount of information available and thus number
of participants. An increase in the sample size can provide a finer classification into sub-classes by
revealing more subtle but significant differences between children within a class. These very flexible
statistical tools offer new ways to simultaneously identify individual differences, temporal dynamics
and situational influences on behavior and cognition.

In the present study, task-goal updating entirely depended on endogenous processes. Such sit-
uations are probably among the most executively demanding and, not surprisingly, about 25% of
5-year-olds (those in the “perseveration” and “random switch” classes) failed to flexibly switch
between tasks under such circumstances. Latent class analysis revealed that these children were not
homogeneous in their response profiles. Children from the “perseveration” class tended to persever-
ate on a single task across all trials, hence switching very infrequently. By contrast, children from the
“random switch” class seemed to respond randomly (in block 2), thus switching (whether intention-
ally or not) more frequently but independently of the expected task sequence. The heterogeneity of
these response profiles is suggestive of distinct underlying cognitive processes. Perseveration may be
especially likely when children fail to understand the necessity of updating task goals from the task
sequence, whereas random responding/switching may relate to difficulty using the task sequence to
correctly determine when to switch despite the understanding that tasks need to be switched occa-
sionally. Indeed, recent evidence shows that children experience difficulty monitoring for the necessity
to switch even in externally cued task-switching contexts (Chevalier et al., 2011). Consistent with this
interpretation, children in the “random switch” class were likely to performed poorly on the back-
ward digit span task, hinting at working memory capacity too low to update and maintain task goals
consistently, whereas perseveration was not related to BDS, suggesting an unrelated and qualitatively
different source of error.

Although some children struggled to switch tasks, most 5-year-olds (the 75% in the “mainstream”,
“efficient set-shifting”, and “strategy change” classes) understood and at least partially implemented
the task sequence, suggesting that most 5-year-olds can successfully update task goals and switch
tasks accordingly, even when no external cues are available. What cognitive processes did children
use to update and maintain task goals? We hypothesized that goal updating and maintenance rely
on the use of information about the previous couple of trials. Children could compare the tasks (color
or shape) performed on the previous trials and, if they match, switch tasks on the upcoming trial.
Alternatively, children could keep track of both the last task performed and its position in the task
sequence (i.e., whether it was performed for the first or second time). Either way, consistent goal
updating and maintenance require keeping track of information on immediately preceding trials. We
hypothesized increasing difficulty across trials due to growing interference from accumulating traces
from past trials. Consistent with this claim, we observed that the probability of correct switching (i.e.,
switching after a repetition) progressively decreased across trials in the “mainstream” class (block 2)
and “strategy change” class (block 1), while latency progressively increased across trials in the “efficient
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set-shifting” class (both blocks). Therefore, task-switching performance does change as trials unfold,
further pointing out the interest of statistical modeling to capture temporal dynamics across trials
(Chevalier et al., 2009).

Interestingly, increasing interference across trials differentially affected speed/accuracy tradeoff
as a function of response profiles. In the “efficient set-shifting” class, children maintained accuracy at
the expense of longer responses, whereas the opposite held true for the “mainstream” and “strategy
change” classes. Our findings are consistent with a report of speed/accuracy tradeoffs in children’s
performance on task-switching paradigms (Davidson, Amso, Cruess Anderson, & Diamond, 2006), but
they go a step further by showing that children seem to differentially handle such tradeoffs depend-
ing on their working memory capacity. Children from the “efficient set-shifting” class were likely to
outperform those from the other classes on the backward digit span task. Their high working mem-
ory capacity may have allowed them to correctly maintain information in the face of large amounts
of interference, but at the cost of longer responding. By contrast, large amounts of interference may
have exceeded the more modest working memory capacity of children from the “mainstream” and
“strategy change” classes, hence necessarily reducing accuracy but leaving children the possibility of
maintaining response speed.

The response pattern of children from the “strategy change” class in the second block of trials was
striking. These children showed very high accuracy, but with a relatively high probability of switching
after a switch. Unlike children from the “efficient set-shifting” class, high accuracy was accompanied
by relatively fast response times. What is more, high accuracy was maintained throughout the block
without increasing latency, hence showing no speed/accuracy tradeoff or sensitivity to increasing
interference across trials. These findings suggest that these children implemented a strategy of a
completely different kind than that used by children from the “efficient set-shifting” class. In particular,
this strategy probably did not rely on information about the previous trials (since performance was not
affected by increasing interference across trials) and was relatively fast to implement, consistent with
the absence of relation with BDS score for this class. These children may have estimated the time spent
on the current task or used the rhythmicity of the task name sequence (“color, color, shape, shape”)
to update task goals, both of which would not require maintenance of information on previous trials,
hence tentatively explaining why this response pattern was not strongly associated with working
memory. The strategy employed on block 2 by children in the “strategy change” class” likely differs
from that used by children in the “mainstream” and “efficient set-shifting” classes, highlighting the
variability in task-goal updating strategies.

Not only did response profiles — and underlying strategies — vary across children; they also changed
between blocks of trials within children. Such changes are especially conspicuous in the “mainstream”
and “strategy change” classes. The hierarchical competing systems model (HCSM; Marcovitch & Zelazo,
2006, 2009) may help account for those within-children changes in strategy between blocks. This
model suggests that executive control development relates to an increase in the level of conscious
reflection on one’s own mental representations and behaviors. Conscious reflection leads to novel
representations and allows one to override former, less efficient or irrelevant responses. HCSM posits
that the likelihood of conscious reflection increases with task experience as well as when new infor-
mation can lead to a better appreciation of the task constraints and affordances. The main event
occurring between the blocks in the present study was the repetition of task instructions, including
the task sequence. The repetition of task instructions in conjunction with children’s now substantial
experience with the task (through block 1) probably helped children realize their initial strategy was
inefficient and prompted conscious reflection that led to new strategies. Conscious reflection may
have been especially likely for children in the “mainstream” and “strategy change” classes (3 and 5)
because they performed at a medium level of accuracy (better than the “perseveration” and “random
switch” classes but lower than “efficient-set shifting” class), leaving room for improvement. Children
in the “strategy change” class may have found a new strategy with lower working memory demands.
Children in the “mainstream” class may have used a new strategy that allowed more accurate respond-
ing on the first few trials of the block but was probably too demanding on working memory and thus
susceptible to interference, as suggested by performance decrease across trials in the second block.

The variability in response profiles observed in the present study suggests that, within a given age
group, multiple strategies coexist and some of these may be of similar efficiency. Although our data
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did not allow any conclusion on strategy variations with age, observing within age-group variability
leaves open the possibility that developmental paths are more gradual, tortuous and diverse than a
clear-cut transition from perseverative behavior to adaptive flexible switching (van Bers et al., 2011).
Clearly, the field of executive control is now ripe for a shift from theories that describe its development
as linear to views that emphasize both inter- and intra-individual variability and capture multiple
developmental pathways (Chevalier et al., 2010; Hanania, 2010; Moriguchi & Hiraki, 2011; Morton
et al,, 2009). Making sense of the observed variability requires statistical tools that simultaneously
allow latent classes analyses and the search for potential explanatory variables. We contend that the
future of research on cognitive development lies in a closer consideration of variations both within- and
between individuals, with statistical modeling becoming a critical tool for developmental scientists.
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