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Relational integration refers to the process whereby several variables are integrated within a single
cognitive representation. In cognitive and developmental science, it is regarded as a central function of
working memory that may contribute to the development of higher order processes, such as reasoning and
fluid intelligence. In the present experiment, we administered the Relational Integration Level Assess-
ment Task (RILAT), a novel experimental task designed to assess children’s level of relational integra-
tion, to participants aged 5–12 years, along with a measure of fluid intelligence. Results yielded age
norms for the development of successive levels of relational complexity and indicated a smooth
progression rather than abrupt, stage-like transitions. Relational integration was found to be closely
associated with fluid intelligence, as measured by Raven’s Progressive Matrices. Analyses of age-related
changes in this association revealed that the relationship was strongest during the stabilization periods for
each level of relational complexity.

Keywords: relational complexity theory, fluid intelligence, cognitive development, Relational Integration
Level Assessment Task, varying-coefficient model

The idea that human intelligence is grounded in the ability to
discover, represent and process relations has its roots in Spear-
man’s seminal conceptualization of the general factor of intelli-
gence. Spearman (1927) tied this g factor to a central cognitive
mechanism that allows the relationship between two items to be
abstracted and applied to another context. Modern-day theories
echo this emphasis on the role of relational processing, with
contemporary advocates arguing that many facets of higher cog-
nition, such as reasoning, language, categorization, and planning,
are relational in nature, insofar as they require the dynamic binding
of elements into structured schemas, in addition to the elementary
processing of isolated features or associations (Halford, Wilson, &
Phillips, 2010). Analogical reasoning, for example, involves iden-
tifying the structural similarity between two situations, on the basis
of relations between objects rather than attributes. The creative
compositionality of human thought is regarded as a byproduct of
our ability to bind “content elements such as words, objects, or
events to places in a cognitive coordinate system or to variables in
a schema” (Oberauer, 2009, p. 47).

In cognitive science, significant progress has been made in
designing plausible connectionist architectures that encode rela-
tional knowledge (Doumas, Hummel, & Sandhofer, 2008). Ad-
vances in neuroscience have also made it possible to identify the
neurobiological correlates of relational integration. In their
groundbreaking study, Waltz et al. (1999) showed that patients

with frontotemporal dementia who had serious frontal lobe dam-
age had particular difficulty with highly demanding relational
tasks. More recent fMRI studies have confirmed that relational
integration reliably recruits the left rostrolateral prefrontal cortex.
This has been demonstrated using tasks that involve the processing
of semantic relations (Bunge, Wendelken, Badre, & Wagner,
2005) or require visuospatial relational processing (Bunge, Hels-
kog, & Wendelken, 2009).

Contemporary research has also been directed toward gaining a
better understanding of how relational links are established in
working memory (WM). WM is often defined as a cognitive
system that stores information while simultaneously processing the
same or additional information. As such, this system is mainly
viewed in relation to its storage capacity. Indeed, tasks designed to
assess WM capacity mainly take the form of span measures. These
characterize WM capacity by the number of items that a partici-
pant can remember and recall while performing concurrent pro-
cessing. By contrast, Oberauer (2009) theorized a model in which
WM’s main function-above and beyond actively maintaining
information-is to support the dynamic binding of elements into
coordinate systems, that is, the formation of relational structures.
This perspective is described as functional, in the sense that WM
is an adaptive system that “has certainly not evolved to help us
remember telephone numbers” (p. 46). More crucially, WM is the
mental workspace where complex problems are solved and is
oriented toward representing the variables involved in those prob-
lems, as well as their interactions. According to the structural
correspondence principle (Halford, Wilson, & Phillips, 1998), the
relations in the resulting representation must correspond to rela-
tions in the world or in the problem statement.

Oberauer (2009) thus contended that the most influential limit-
ing factor is not the ability to retain information, per se, but the
ability to integrate several variables into the representation of a
common coordinate system. This is the ability that is referred to as
relational integration (RI). Empirical evidence in favor of this
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view comes from studies exploring the links between WM and
fluid intelligence. A well replicated finding in the literature is that
individual variations in WM efficiency are closely correlated with
measures of a broad range of higher cognitive abilities, such as
reasoning or text comprehension (Kane, Hambrick, & Conway,
2005). Oberauer, Süb, Wilhelm, and Wittmann (2008) showed that
(a) tasks involving RI are better predictors of performance on
reasoning tasks than more traditional WM span tasks, and (b) this
predictive power prevails even when the RI tasks do not require
any form of information storage.

Oberauer’s (2009) model of WM is not the only one to place
considerable importance on RI. In the field of cognitive develop-
ment, the relational complexity theory originally proposed by
Halford (1993) and regularly updated since then (Halford et al.,
1998, 2010), shares many of its core assumptions about the nature
of WM limits and the constraints they place on fluid intelligence.
However, Halford went one theoretical step further than Oberauer
by defining a metric by which to identify a task’s precise relational
processing requirements. This relational complexity metric applies
both to the problem’s structural features and to the individual’s
processing capacity. Relational complexity (RC) is defined as the
number of variables that must be related within the same coordi-
nate system. Unary relations are based on a single variable, binary
relations on two, ternary relations on three, and so on. RC theory
posits that quaternary relations constitute the upper limit of human
processing capacity. However, there are two mechanisms that can
help individuals overcome this processing barrier: segmentation
and chunking. Segmentation consists in breaking excessively com-
plex tasks down into several steps, while chunking consists in
compressing two or more variables into one.

RC theory also makes strong predictions regarding age-related
changes in relational processing capacity, and their causal role in
cognitive development. Developmental changes are described as
roughly occurring as follows: children become able to process
unary relations at a median age of 1 year, binary relations at 2
years, ternary relations at 5 years, and quaternary relations at 11
years. This gradual growth of processing capacity is thought to
increase the number of variables that children can link together in
their mental models, which in turn broadens the scope of their
conceptual development and reasoning abilities. Halford and col-
leagues estimated its approximate chronological sequence mainly
on the basis of performances on preexisting developmental tasks
(e.g., class inclusion, theory of mind, transitivity, sentence com-
prehension, balance), to which analyses of complexity were ap-
plied (e.g., Andrews & Halford, 2002). Cognitive aging research-
ers have described a symmetrical decline in relational processing
capacity, in that it seems to follow the developmental trajectory in
reverse (Viskontas, Holyoak, & Knowlton, 2005). RI therefore lies
at the heart of many debates over the mechanisms responsible for
both cognitive growth and decline. However, surprisingly few
efforts have been made to design specific tasks to assess this
dimension of WM capacity, compared with the plethora of span
measures dedicated to the assessment of its storage component
(Conway et al., 2005). We now briefly review the few attempts
that have been made in this direction.

Bunge et al. (2009) expanded on a task originally designed by
Christoff, Ream, Geddes, and Gabrieli (2003) to create the Rela-
tional Matching Task (RMT). The stimulus display features four
shapes with varying textures. Two types of trials are instantiated

by specific questions that orient the participants’ attention toward
the detection of a feature similarity between two objects versus the
detection of a relational similarity between two pairs of objects.
This task, which nicely embodies the higher order nature of rela-
tional processing, was designed to study the neurological corre-
lates of basic RI processes, rather than individual differences in RI.

In order to explore the respective contributions of storage and
integration processes to fluid intelligence, Oberauer, Süß, Wil-
helm, and Wittmann (2003, 2008) designed a series of RI tasks. In
a verbal task, participants had to detect whenever rhyming words
occurred next to each other in the same row of a matrix. In a
numerical task, they had to watch out for rows of numbers with the
same last digit. Finally, in a spatial coordination task, they had to
monitor the direction of airplanes in a flight control display, taking
their relative speed and trajectory into account. Despite variations
in the nature of the information that had to be processed (verbal,
numerical, or spatial), all these tasks were designed to recruit the
participants’ ability to construct links between different items of
information and mentally integrate them. This use of multiple tasks
with varying contents fits well with the research approach of
Oberauer et al., which is based on structural equation modeling,
that is, aggregating the scores on several tasks in order to suppress
specific variance and reinforce the variance of the composite
variable. However, this type of design is difficult to use in devel-
opmental research, which crucially requires that all tasks be
equally applicable to a broad age range. Furthermore, the tasks
administered by Oberauer et al. did not clearly specify or manip-
ulate the level of RC to which participants were exposed.

The study by Birney, Halford, and Andrews (2006) represented
a major step forward in this respect, as they developed a new
experimental task that was explicitly derived from RC theory,
namely, the Latin Square Task (LST). The task is based on a
matrix of 16 cells that can each be filled with one of four different
geometric shapes. It works on the same principle as Sudoku
problems, in that each shape must appear only once in each row or
column. Participants are shown an incomplete matrix and asked to
determine which of the shapes should be placed in a target cell.
The LST had two important qualities with regard to RC theory
requirements. First, the task minimizes the information that has to
be held in memory, and consequently emphasizes the role of RI as
opposed to storage. Second, it relies on one simple rule (suitable
for a broad range of ages and abilities) that can be applied to items
of varying complexity. The RC of LST items is manipulated by
controlling the numbers of rows and columns that need to be
simultaneously considered in order to choose the right shape for
the target cell.

Although the LST has been administered to participants from
various age groups (Birney et al., 2006; Zeuch, Holling, & Kuhn,
2011; Zhang, Xin, Lin, & Li, 2009) using it to measure RI in
children raises specific difficulties. A more recent study (Perret,
Bailleux, & Dauvier, 2011) indicated that the influence of RC on
children’s performances is mediated by the differential use of
specific deductive strategies. As the LST is a deductive task, it is
particularly sensitive to variations in reasoning pathways or stra-
tegic approaches that may confound the effect of relational pro-
cessing constraints through segmentation or chunking. Mindful of
the sound principles on which the LST was built, we therefore
designed a new experimental task that avoids previous pitfalls in
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the measurement of RI, in order to study its development and its
relationship with fluid intelligence.

The Relational Integration Level Assessment Task
(RILAT) and the Present Experiment

The Relational Integration Level Assessment Task (RILAT)
shares a number of features with the LST: (a) freedom from the
influence of prior knowledge, (b) an emphasis on processing, as
opposed to storage, and (c) reliance on a single rule. The task
features 12 items with increasing RC levels (binary, ternary, and
quaternary). Each item contains one or several geometrical figures,
each with up to four features (shape, color, texture, and number of
stars). Furthermore, each feature has three modalities (shape: cir-
cle, square, or triangle; color: red, green, or blue; texture: filled,
empty, or striped; and up to three stars). The task consists in
finding a new figure to replace a question mark linked to one or
more other figures by respecting a single rule: the response must
share one and only one feature with each of the other figures. Thus,
in the binary example in Figure 1 (red circle), a red square or
triangle and a blue or green circle would be correct, but a red circle
(two shared features) or a blue square (no shared feature) would be
incorrect. This item is regarded as binary because two features
(shape and color) have to be considered in interaction in order for
the problem to be solved.

To limit the possibility of segmentation and chunking, which
would reduce the integration demand, the problem’s state space
needed to have an interaction structure. Table 1 shows the nine
possible responses for the red circle in the binary example, indi-
cating the number of shared features for each one. The correct
responses, in bold, are those that only share one feature with the
red circle. The solution could have any one of the three colors and
any one of the three shapes, but shape and color interact, such that
the color of the response depends on its shape, and vice versa.
Table 1 is made up of four areas and resembles the exclusive or
(XOR) truth table. The XOR problem is known not to be linearly
separable and reflects a kind of interaction between two dimen-
sions. The correct and incorrect responses cannot be separated by
a straight line, it is two-dimensional and cannot be simplified to a

lower level of complexity. To learn to solve this problem, an
artificial neural network needs one more layer than it does for
AND or inclusive OR logical operations (Beale & Jackson, 1990).

Returning to the RILAT, some modalities within a given feature
(shape or color) can be chunked. In the red circle example, once
the circle has been chosen, the constraint on the color is “not red,”
meaning that both green and blue are appropriate. Symmetrically,
when the color red is the starting point, as long as the shape is not
a circle, it makes no difference whether it is a square or a triangle.
This chunking does not reduce the complexity level but shows that
the same complexity could have been achieved with only two
modalities per feature. The critical point in determining the dimen-
sionality of the problem is therefore neither the number of figures
nor the number of modalities within a feature, but the number of
features. A binary item need have only one visible figure. Adding
a second visible figure (e.g., a green square) would force children
to perform two consecutive binary integrations, but not a ternary
one. If a circle was taken as the starting point, then it would have
to be “not red,” and as the missing figure was not a square, it
would have to be green. There is no three-way interaction to be
processed here. Providing more than three colors or shapes offers
new possible responses, but leaves the structure of the truth table
(Table 1) unchanged and does not increase RC.

Ternary items comprise two figures with three features (shape,
color, and texture). In order to solve these items, participants have
to take the features of three figures into account: the two figures
that are already visible, and the figure that is under construction.

Figure 1. Examples of Relational Integration Level Assessment Task items testing the three levels of relational
complexity.

Table 1
Number of Features That Each of the Nine Possible Responses
Shares With the Target Figure (Red Circle) in the Binary
Example in Figure 1

Shape Red Green Blue

Circle 2 1 1
Square 1 0 0
Triangle 1 0 0

Note. Correct responses are indicated in boldface.
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Table 2 sets out the three features of these three figures for the ternary
example in Figure 1. Participants also have to ensure that the figure
under construction has one link with each of the two target figures.
These links are highlighted in bold face in Table 2.

The ternary items are intended to create an interaction pattern
between the three features (shape, color, and texture) that make up
the three dimensions of the interaction in the problem space. Table
3 shows all the possible responses for the ternary example (Figure
1), indicating the numbers of features shared with each of the two
figures. Out of the 27 (33) possible responses, six are correct (i.e.,
they share one and only one feature with each figure) and are
highlighted in bold type in the table. Each layer of the three-
dimensional array contains at least one solution, and none of the
rows or columns contains three solutions. This means that in the
resolution process, no modality can be definitively rejected or
retained independently of the other features. Correct responses are
not a linearly separable subset of the three-dimensional array. No
plane can intersect with the cube to separate the right and wrong
responses, as one would expect in a three-way interaction pattern.

Another way to figure out the interaction pattern is to have a
look at the six correct responses. When choosing the texture, both
shape and color have to be taken into account. If the ongoing
answer is green, it can be either filled or striped, depending on its
shape (circle or triangle). If it is a green circle, then it must be
filled, but if it is green but not a circle, it cannot be filled. Within
the set of correct responses for a given item, the same two
modalities of different features (e.g., circle and green) never ap-
pear together more than once. This means that an association
between, say, a shape and a color may or may not be correct,
depending on the texture, and vice versa. This configuration cor-
responds to a three-way interaction between shape, color, and
texture. The problem is thus three-dimensional and cannot be
reduced to a lower level. Quaternary items are built on the same
principle, by adding a third figure to each item and, crucially, a
new feature (one, two or three stars).

In the quaternary item in Figure 1 (filled blue triangle 3�, striped
blue circle 1�, empty red square 1�), a filled red circle with 2 stars
would share one (and only one) common feature with each of the
figures and is thus a correct response. Changing the response from
filled to empty would mean changing the color to green and
increasing the number of stars to 3, in order to construct a new
correct response (empty green circle 3�), reflecting the interaction
between the four features in the item.

The main objective of the present study was to investigate the
development of RI during childhood by means of this new task. A
set of 12 items arranged in order of complexity level was created
and administered to children aged 5–12 years. We specifically
wanted to identify the two transitional periods that correspond to

the emergence of the ability to deal with ternary and quaternary
relations. As RI seems to play a key role in reasoning and fluid
intelligence, children also completed Raven’s Standard Progres-
sive Matrices (SPM; Raven, 1956). The data set allowed us to
investigate the development of RI and its relation with fluid
intelligence.

Method

Participants

Participants included 184 children aged 5–12 years (M � 98.4
months, SD � 25.2 months, range � 59–146 months), of whom
54% were girls and 46% were boys (see Table 5 for group details).
These children were recruited from a preschool, an elementary
school and a middle school located in a small town in southeastern
France. Most participants were Caucasian and came from middle-
to upper-class backgrounds, although data on ethnicity and socio-
economic status were not collected. Parental consent was obtained
for all participants. Participants were tested individually in a quiet
room at their school.

Materials and Procedure

The children completed the RILAT and Sets B, C, and D of the
SPM. We believed that the SPM were more suitable than Raven’s
Colored Progressive Matrices, as they would avoid the probable
ceiling and floor effects arising from the sample’s broad age range.
As we nonetheless expected to see little variance for the youngest
children, only the 111 participants from Grades 2–6 (aged 7–12
years) performed the SPM.

Materials. The RILAT comprised 12 items arranged in order
of complexity, with four items per level of complexity. They were
built by changing the features (shape, color, texture, and number of
stars) on the basis of several frameworks that were checked for the
numbers of correct responses they allowed. The number of correct
responses, like the number of possible responses, varied according
to the item’s level of complexity. Binary items had a combinatorial
chance level (number of correct responses/number of possible
responses) of 0.44, but they were not intended to be discriminant,
given the children’s age range. The chance level for ternary and
quaternary items never exceeded 0.22. For each item, participants
were reminded of the three possible shapes, colors and, for the
ternary and quaternary items, textures and numbers of stars, be-
tween which they had to choose.

Table 3
Number of Features Shared by the 27 Responses With the Two
Target Figures (Green Empty Square and Red Striped Circle) in
the Ternary Example in Figure 1

Shape

Empty Striped Filled

Red Green Blue Red Green Blue Red Green Blue

Circle 1–2 2–1 1–1 0–3 1–2 0–2 0–2 1–1 0–1
Square 2–1 3–0 2–0 1–2 2–1 1–1 1–1 2–0 1–0
Triangle 1–1 2–0 1–0 0–2 1–1 0–1 0–1 1–0 0–0

Note. The six correct responses are indicated in boldface.

Table 2
Relevant Information for Solving the Ternary Example in
Figure 1

Variable Figure 1 Figure 2 Response

Shape Square Circle Circle
Color Green Red Green
Texture Empty Striped Filled

Note. Boldface indicates the links to the two target figures.
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Procedure. The RILAT was administered individually, with
each item printed on a separate sheet of paper. The test phase was
preceded by a detailed instruction phase. First, a binary example
(red triangle) was shown to the children, and they were told that
they had to find a figure to replace the question mark, abiding by
one important rule: “Your response must only have one point in
common with this figure.” Children had to produce a verbal
description of a figure that conformed to the rule. At the bottom of
each item, symbols representing both the features and their mo-
dalities were used to draw the children’s attention to the response
requirements: “In this example, there are two possible points in
common: shape or color. To replace the question mark, you must
choose a shape (either a circle, a triangle, or a square) and a color
(red, green, or blue).” The experimenter then showed them a
picture illustrating an example of an incorrect response, explaining
why it broke the rule, and another one illustrating an example of a
correct response, explaining why it fitted.

The same procedure was repeated with a ternary and a quater-
nary example. Finally, the children were given a binary example
and asked to find the solution themselves. They had to supply their
responses verbally and were prompted to confirm their “final
offer” before proceeding to the next item. Self-corrections were
accepted until the response was validated. If there was no response
within 2 min, an item was deemed to have been failed.

Results

Univariate and bivariate descriptive statistics of correct response
frequency by complexity level are provided in Table 4. For the
whole sample, theoretical RC had a considerable effect on success
rates. The mean correct response rate was 3.76 (out of 4) for binary
items, 2.23 for ternary items and 1.29 for quaternary items. For the
binary items, low variance and skewness reflected a ceiling effect
that reduced the correlations with the other variables. The
RILAT’s internal consistency was good (Cronbach’s alpha �
0.79), and the first factor of a principal components analysis based
on the variance-covariance matrix explained over 40% of the total
variance.

The high correlation between age and the total score (0.738, p �
.01) told us that RI, as measured by the RILAT, was closely linked
to age between 5 and 12 years. Both ternary (r � .677, p � .01)
and quaternary items (r � .675, p � .01) contributed to the overall
correlation, but the binary items were less sensitive for this age
group (r � .272, p � .01). The correlation between the RILAT and
SPM scores was also high (r � .671, p � .01), consistent with the
link between the SPM scores and age (r � .68, p � .01).

Table 5 indicates mean accuracy by age and level of complexity.
Descriptively, a clear developmental effect appeared regarding
both ternary and quaternary items. Neither standard deviations nor
classic quantile intervals are suitable dispersion indicators for item
performance distributions, as these distributions are highly asym-
metrical, with numerous equal values. Expectiles (Jones, 1994) are
weighted means similar to quantiles, and deliver more sensitive
estimates. Expectile intervals (Table 5) indicated a high level of
individual differences. This variability was stable across age. The
80% interval had a width of around 0.40 between 6 and 10 years
for the ternary items, and between 7 and 12 years for quaternary
items.

Developmental Trend in Relational Integration

To achieve a more fine-grained analysis of developmental
changes in RI, we adopted a generalized linear mixed effect model
(GLMM) approach using the lme4 package (Bates & Sarkar, 2009)
in R (R Development Core Team, 2009). This allowed us to model
response accuracy in relation to age and theoretical complexity
level. The model used a binomial distribution with a logistic link
function and a random intercept by participant. Age was standard-
ized before being introduced in the model. Estimated parameters
are provided in Table 6. Ternary items were taken as the intercept
and used as a benchmark. Binary items appeared significantly
easier than ternary ones (Binary-Ternary � 3.05, p � .01), and
quaternary items were significantly more difficult than ternary
ones (Ternary-Quaternary � 1.51, p � .01). The effect of age was
significant at all three complexity levels. Comparisons with sim-
pler, constrained models revealed that the slopes for ternary and
quaternary items did not differ significantly from each other, while
binary items were less sensitive to age, probably owing to a ceiling
effect.

A graphic representation of the fixed part of the model is given
in Figure 2. We divided the developmental trends into three phases
for ease of presentation. For ternary and quaternary items, the
chance level of success was slightly below 0.25 (e.g., six of the 27
possible responses for the ternary item in Figure 1 were deemed to
be correct). Rates below this level were therefore considered to
reflect random responding. In the early success phase, accuracy
ranging from 0.25 to 0.5 reflected responding above chance level
but still less than half the time. Accuracy above 0.75 corresponded
to mastery of the RI level. There was also a transitional phase,
where accuracy ranged from 0.5 to 0.75, possibly corresponding to
process stabilization.

Table 4
Descriptive Statistics of the Numbers of Correct Responses by Complexity Level and Bivariate Correlations

Variable M SD Skewness Age Binary Ternary Quaternary RILAT total

Age 98.42 25.23 0.29
Binary 3.76 0.58 �20.82 .272�

Ternary 2.23 1.48 �0.25 .677� .217�

Quaternary 1.29 1.31 0.65 .675� .274� .681�

RILAT total 7.28 2.77 0.06 .738� .455� .902� .894�

SPM 36.64 8.94 �0.16 .68� .361� .526� .613� .671�

Note. RILAT � Relational Integration Level Assessment Task; SPM � Raven’s Standard Progressive Matrices.
� p � .01.
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The probability of success on the binary items was very high,
even for the youngest children, meaning that all the children were
in the mastery phase for these items. Regarding ternary items,
children found the correct response in one in four trials (p � .25)
at around 72 months (6 years). After 6 years, children thus ap-
peared to perform above chance level. A 0.50 probability of
success was reached at around 92 months (7.6 years). After 110
months (9.15 years) the probability of success was greater than
0.75, meaning that most of the children resolved these items most
of the time. The slopes of the ternary and quaternary items were
roughly similar, such that the improvement in performance on
quaternary items occurred at the same pace, but 30 months (2.5
years) later. Items were solved in one in four trials at 100 months
(8.3 years). A 0.50 probability was reached at 120 months (10
years) and probability of 0.75 at 140 months (11.6 years). For
ternary, as for quaternary items, it took around 40 months (3.33
years) to go from the early signs of success to complete mastery.
The two transitional phases occurred between 92 and 110 months
(7.6–9.15 years) for ternary items, and between 120 and 140
months (10–11.6 years) for quaternary items.

The improvement in performance was clearly linked to age but
was relatively smooth at the group level. Individual differences in
performance at a given age may have contributed to the smooth-
ness of the developmental trends observed at the group level. A
look at individual profiles revealed that for more than 70% of the
children, there was a difference of fewer than two points between
their performances on ternary and quaternary items. Very few
children (14.6%) were highly successful at the ternary level (scores

of 3 or 4) and completely failed the quaternary level at the same
time (scores of 0 or 1), suggesting a smooth transition rather than
a stagewise one, even at the individual level.

To compare the likelihoods of these smooth or stagewise tran-
sition patterns, a set of latent class models with binomial distribu-
tion were fitted using the finite mixture of generalized linear
models approach (Aitkin, 1999; Dauvier, Chevalier, & Blaye,
2012) with the npmlreg R package (Einbeck, Darnell, & Hinde,
2006). A stagewise transition at the individual level would be
expected to produce a multimodal distribution of the latent scores,
rather than a uniform or normal distribution (van der Maas &
Molenaar, 1992). The model comparison methodology allows sev-
eral configurations of the latent trait to be tested: two, three or four
classes and a normal distribution with the GLMM. It should be
noted that a normal distribution is not the best continuous distri-
bution for developmental data. As age was uniformly distributed
across the sample, a uniform distribution of the latent trait would
have been more appropriate, but this distribution is not available in
standard statistical packages to our knowledge.

According to the Akaike information criterion (AIC), the three-
class model (AIC � 1,916) performed better than both the two-
class (AIC � 1,943) and four-class (AIC � 1,918) models, and
even better than the GLMM model with a normal distribution of
the latent score (AIC � 1,928). Children in the first class (n � 77,
mean age � 81 months) only succeeded on the binary items

Table 5
Mean Accuracy by Age and Complexity Level

Age in years Age in months n Binary Ternary Quaternary

5 66.03 31 0.87 (0.61, 0.97) 0.25 (0.05, 0.56) 0.04 (0.00, 0.15)
6 77.22 37 0.91 (0.71, 0.98) 0.22 (0.04, 0.50) 0.11 (0.01, 0.29)
7 89.77 26 0.93 (0.78, 0.99) 0.59 (0.37, 0.79) 0.25 (0.07, 0.42)
8 102.58 24 0.97 (0.88, 0.99) 0.69 (0.50, 0.88) 0.42 (0.16, 0.66)
9 115.04 24 0.94 (0.82, 0.99) 0.70 (0.37, 0.93) 0.44 (0.19, 0.70)

10 126.87 15 1.00 (1.00, 1.00) 0.80 (0.51, 0.96) 0.48 (0.15, 0.80)
11 136.95 21 0.98 (0.92, 0.99) 0.91 (0.73, 0.98) 0.72 (0.50, 0.92)
12 145.00 6 1.00 (1.00, 1.00) 0.95 (0.83, 0.99) 0.77 (0.36, 0.90)

Note. The intervals shown in brackets are 80% expectile intervals. Expectiles (Jones, 1994) are to the mean
what quantiles are to the median. They provide a sensitive measure of individual differences in contexts where
distributions are asymmetrical with numerous equal values.

Table 6
GLMM Estimates of Accuracy by Age and Complexity

Variable Estimate SE z Pr(� |z|)

Ternary (Intercept) 0.40 0.12 3.29 �.01
Binary-Ternary 3.05 0.24 12.68 �.01
Ternary-Quaternary 1.51 0.14 10.76 �.01
Binary:Age 0.91 0.24 3.85 �.01
Ternary:Age 1.49 0.13 11.05 �.01
Quaternary:Age 1.37 0.13 10.32 �.01

Random effect Variance � 0.98

Note. GLMM � Generalized Linear Mixed Effect Model. Model for-
mula: Accuracy � Complexity � Age: Complexity � (1|Participant).

Figure 2. Probability of success as a function of age by complexity level,
according to the fixed part of the generalized linear mixed effect model.
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(success rate: binary � 0.88, ternary � 0.19, quaternary � 0.05),
children in the second class (n � 80, mean age � 105 months)
reached the ternary level (success rate: binary � 0.98, ternary �
0.76, quaternary � 0.39), and children in the third class (n � 27,
mean age � 131 months) mastered the quaternary level (success
rate: binary � 1, ternary � 0.99, quaternary � 0.89).

At first glance, these results appear to support the stagewise
hypothesis, but it should be borne in mind that the uniform
distribution model was not tested, and the four-class model (the
closest to the uniform distribution model) could have been re-
jected, owing to a lack of statistical power. Moreover, the success
rate of the children in the second class on the quaternary items was
0.39, which is much higher than the 0.25 expected for random
responding, suggesting that mastering the ternary complexity level
enhanced children’s likelihood of success on the quaternary items.
Children belonging to the ternary stage may have managed to
solve quaternary items for at least two reasons. For a start, some of
them may sometimes have reached the quaternary level, but with
low reliability, suggesting a smooth transition. Furthermore, if they
processed quaternary items at the ternary level, they would have
been able to pick their responses from a subset of plausible
responses, resulting in a higher chance level.

We investigated this second possibility by analyzing their errors.
We computed the distance from the correct response for each
individual response by counting the number of surplus or missing
shared features in relation to the goal of one (and only one) shared
feature with each figure. The same latent class and random effect
models were fitted, with distance as the response variable and a
Poisson distribution. The four-class model (AIC � 3,873) per-
formed better than either the three- or five-class models (AIC �
3,888 and 3,875, respectively) or the normal distribution model
(AIC � 3,909). The first (n � 26, mean age � 73 months) and
fourth (n � 14, mean age � 134 months) classes matched the
expected profiles for the binary and quaternary levels (Class1:
distance bin. � 0.18, ter. � 1.64, quat. � 3.08; success rate bin. �
0.8, ter. � 0.09, quat. � 0, and Class4: distance � 0, success
rate � 1 for all items).

The ternary level group identified in the latent class analysis on
the basis of performance was split. Children in the second class
(n � 89, mean age � 89.4 months) were above the binary level,
but still in the early success phase for ternary items (distance
bin. � 0.06, ter. � 0.78, quat. � 1.62; success rate bin. � 0.94,
ter. � 0.43, quat. � 0.16). Children in the third class (n � 55,
mean age � 116 months) successfully resolved the ternary items
and were in the transitional phase for quaternary items (distance
bin. � 0.01, ter. � 0.15, quat. � 0.65; success rate bin. � 0.99,
ter. � 0.87 quat. � 0.56).

According to the distance analysis, improvement at a given level
also had an effect on higher level items. For example, with the
quaternary items, children in the second class were able to sub-
stantially shorten the distance from the correct response (dist
quat. � 1.62) compared with children in the first class (dist quat. �
3.08), even though both classes of children were still a long way
away from the quaternary level. At the individual level, dealing
with a quaternary item at a ternary level allowed the set of
plausible responses to be reduced and had an impact on the relative
chance level. We computed the relative chance levels of solving an
item at level L with an L � 1 individual RI level, that is, the
number of correct responses divided by the number of possible

responses that shared at least L � 1 feature with one of the correct
responses. For ternary and quaternary items, these relative chance
levels never exceeded 0.25.

Another way to calculate the relative chance level is to consider
that a child who can correctly process the L � 1 levels has to pick
the final feature at random within the three modalities of that
feature, resulting in a 1/3 chance level. These relative chance
levels were too low to explain the smoothness observed in the
developmental trends and in the individual performance profiles,
which both exhibited the cohabitation of a relatively high success
rate for quaternary items (approx. 0.4) and improving perfor-
mances on ternary items (.75). Moreover, the latent class analysis
based on distance showed that some children had transitional
response patterns (between binary and ternary, or between ternary
and quaternary), thus invalidating the stagewise hypothesis even at
the individual level.

Relational Integration and its Relationship With Fluid
Intelligence

The RILAT and SPM scores were closely correlated with age in
our sample (0.74 and 0.68, respectively). The relationship between
scores on ternary and quaternary items and SPM scores was
analyzed after controlling for the effect of age with varying-
coefficient models. Varying-coefficient models are multiple re-
gression models where some coefficients can vary across time. In
our case, the dependent variable was SPM scores and the explan-
atory variables were age and scores on the ternary and quaternary
items. Binary items were removed from this analysis due to the
ceiling effect mentioned earlier. As age was one of the explanatory
variables, the estimated influence of ternary and quaternary scores
was conditional upon age. Moreover, the regression coefficients of
these variables were allowed to change as a function of age.

In technical terms, two interaction terms between age (expressed
in the form of its first natural quadratic splines) and scores on
ternary and quaternary items were introduced in the linear model
to allow for smooth nonlinear variations in the coefficients. The
first step was to determine the optimum amount of smoothing. To
this end, several varying-coefficient models with increasing de-
grees of freedom of the natural quadratic spline were fitted to the
data. The AIC model selection criterion pointed to a model with
three degrees of freedom (M3 exhibited the lowest AIC; cf. Table
7) that explained 71% of the variance of the SPM scores.

The estimated standardized regression coefficient of age on
SPM scores was .44 (p � .01). Figure 3 shows changes in the links
between scores on the ternary and quaternary items and SPM
scores as a function of age. All the variables were standardized
before being introduced in the model, so that the scale of the y-axis
corresponded to standardized coefficients (�). The contribution of
ternary items peaked at around 100 months (8.3 years, � � 0.70)
and strongly decreased after 110 months. It was slightly negative
after 120 months, probably reflecting a methodological artifact
related to the quadratic spline smoothing, which cannot follow an
asymptotic trajectory to zero with a reasonable degree of freedom.

Quaternary items were influential throughout this period, but a
little more so at around 130 months (10.8 years, � � 0.39), when
ternary items were at their lowest level. When Figures 2 and 3 are
combined, we see that the two peaks were reached when the
probabilities of a success were around 0.65 for ternary and for
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quaternary items (i.e., during their transitional phases). When the
mean levels and individual differences were considered together,
two sensitive periods emerged. The first one presumably corre-
sponded to the ternary transition and lasted from 90 (7.5 years) to
110 months (9.15 years), when the probability of success ranged
from 0.5 to 0.75. The second period presumably corresponded to
the quaternary transition, and lasted from 120 months (10 years) to
140 months (11.6 years).

Figure 4 illustrates the changes in the R-squared value of the
varying-coefficient model with age. Two rough estimates of the
R-squared conditional upon age were computed using different
approaches. The solid line is the sum of the squared � of age and
the squared � values of Figure 3. The dots’ coordinates were
computed by sliding a window across the data sorted by age. For
the first dot, the x value was the mean age of the 19 youngest
children and the y value was the squared correlation between the
SPM scores and the fitted value according to M3 for the same
children. The window was slid across the whole data set to obtain
the scatterplot. The two approaches were in good agreement with
each other. At around 100 months (8.3 years), SPM performances
were strongly correlated with RI (R2 � .75), as assessed by the
ternary items. The influence of RI decreased after this peak, but
started to increase again at around 120 months (10 years), when the
probability of success for quaternary items reached 0.5. A second,
smaller peak (R2 � .42) occurred at around 130 months (10.8

years), corresponding to the strongest influence of the quaternary
items.

Discussion

The aim of the present study was twofold. First, we wanted to
explore developmental changes in RI, as measured by a task we
designed specifically to tap children’s ability to mentally coordi-
nate several variables. Second, we wanted to investigate both the
extent to which this ability was related to fluid intelligence, and
age-related changes in this relationship.

The findings of our experiment broadly support the develop-
mental sequence predicted by Halford’s RC theory. First of all,
item difficulty in the RILAT task systematically varied with RC:
The mean proportion of correct responses decreased as a function
of the number of variables. As expected, binary items did not pose
any difficulty for the children in our sample: we did not expect to
see any further development in the processing of binary relations
across the age range we tested. We observed early successes on
ternary items among the 5- and 6-year-olds, consistent with pre-
vious studies indicating that children start to grasp ternary relations
at around this age. Andrews and Halford (2002), for instance,
found that tasks from different domains (transitivity, class inclu-
sion, or relative clause-sentence comprehension) that had all been
deemed to have ternary relations were successfully processed at a
median age of 5 years. Similar results have been reported with
theory of mind tasks (Andrews, Halford, Bunch, Bowden, & Jones,
2003).

More surprising, the earliest successes on RILAT’s quaternary
items were observed among children aged 8–9 years in our sam-
ple. Relatively few studies have explored children’s processing of
quaternary relations. In their influential article setting out the core
assumptions of RC theory, Halford et al. (1998) mentioned two
domains of particular relevance for the study of quaternary rela-
tions: proportions and the balance scale. Proportions are described
as quaternary because they involve the processing of relations that
entail four arguments (a/b � c/d). Although Inhelder and Piaget
(1958) regarded the processing of proportions as a late acquisition
(not before 11 years), more recent research suggests that under
favorable conditions, children can exhibit valid proportional rea-
soning somewhat earlier (Boyer, Levine, & Huttenlocher, 2008).
Regarding the complexity of the balance scale, Halford and col-
leagues (Andrews, Halford, Murphy, & Knox, 2009; Halford,
Andrews, Dalton, Boag, & Zielinski, 2002) argued that problems
in which both weight and distance vary on each side entail qua-

Table 7
Goodness-of-Fit Statistics for the Varying-Coefficient Models

Model Model df AIC R2

M0. Multiple regression 4 219.67 .62
M1. Varying-coefficient linear 6 205.47 .67
M2. Varying-coefficient quadratic spline (df � 2) 8 205.98 .68
M3. Varying-coefficient quadratic spline (df � 3) 10 199.71 .71
M4. Varying-coefficient quadratic spline (df � 4) 12 202.11 .72

Note. AIC � Akaike information criterion. The best model is highlighted in boldface. Expressed in Wilkinson
and Rogers’s (1973) notation used in R, the model equation for the varying-coefficient model was SPM � Age �
Ternary � Quaternary � ns(Age, df � 0–4): (Ternary � Quaternary). The ns() function was used to compute
the first natural splines of age.

Figure 3. Changes in the standardized regression coefficients of scores
on ternary and quaternary items as a function of age, with Raven’s
Standard Progressive Matrices scores as the dependent variable.
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ternary relations. The authors then noted that these types of bal-
ance task items are rarely solved before the age of 11 years.
However, solving them requires not only the processing of qua-
ternary relations but also the comprehension and appropriate ap-
plication of the torque rule (i.e., comparing the product of the
weight and distance on the left side with the product of the weight
and distance on the right side). This additional requirement could
explain the developmental lag between the early success we ob-
served on the RILAT’s quaternary items and correct responses on
the balance scale.

In addition to yielding these new data documenting the age at
onset for each level of RI, our study highlighted two important
developmental phenomena. First, the age norms suggested by our
data should not disguise the breadth of individual variability. As
indicated by the 80% expectile intervals in Table 5, there was
considerable individual variability in the pace at which the chil-
dren reached the successive levels of RI. Second, as illustrated in
Figure 2, the development of RI is not a series of abrupt, stage-like
transitions. Rather, at both the group and individual levels, there
was a smooth and gradual increase in the probability of success.
For quaternary and ternary relations, comparable 40-month periods
separated the early signs of success from complete mastery. Thus,
even if transitions from one level to the next mark important
developmental milestones, the development of RI also relies sub-
stantially on the child’s ability to allocate optimum processing
capacity to several different items in a sustained fashion. The
analyses of individual performance patterns pointed to the exis-
tence of intermediate levels of functioning (beyond the develop-
mental steps of binary, ternary and quaternary processing abili-
ties), and the study of RI development in children would surely
benefit from future research using longitudinal and/or microge-
netic designs.

The present experiment also adds to the growing body of liter-
ature on the influence that WM constraints exert on the develop-

ment of fluid intelligence (Tillman, Nyberg, & Bohlin, 2008). As
in the adult literature, however, the role of RI is often neglected on
the developmental front: Alternative views tend to focus on either
the storage (Hornung, Brunner, Reuter, & Martin, 2011) or exec-
utive (Engel de Abreu, Conway, & Gathercole, 2010) components
of WM. Our findings extend the results that Andrews and Halford
(2002) obtained with a younger sample of children and a different
methodological approach. Using factor scores derived from chil-
dren’s performances on a set of six tasks with items of varying
complexity and a different measure of fluid intelligence (Culture
Fair Test of g; Cattell, 1950), these authors found that the ability
to process complex relations accounted for a sizeable proportion of
the development of fluid intelligence with age.

The results of our study indicate that the relationship between RI
and fluid intelligence is indeed relatively close across childhood,
but varies with age. Figures 3 and 4 show two peaks corresponding
to two periods of stronger links between RI and SPM scores, the
first one being the strongest. The first period lies in what we
identified as the transitional phase for ternary items (90–110
months, around 8 years), where regression coefficients between
performances on ternary items and SPM scores reached around
0.70. A few months later, during the transitional phase for quater-
nary items (120–140 months, around 10 years), the link between
SPM and performances on quaternary items became stronger
again, reaching values of around 0.40.

One possible interpretation for this is that RI and fluid intelli-
gence enjoy an asymmetrical relationship. With reference to
Pascual-Leone’s theory (Pascual-Leone & Johnson, 2005), de Rib-
aupierre and Lecerf (2006) suggested that the M factor (WM
capacity) is necessary, but not sufficient, to resolve complex tasks
such as Raven’s progressive matrices. De Ribaupierre and Lecerf
highlighted a relation of implication between reasoning tasks and
WM tasks but concluded that the importance of WM declines with
practice, in favor of other factors. The M factor can therefore be

Figure 4. Estimated R-squared of the varying-coefficient model as a function of age. Note that the moving
window estimation was obtained by sorting the participants’ scores by age and computing the squared correlation
between their Raven’s Standard Progressive Matrices scores and the fitted values given by the model on a
window of 19 children. We slid this window through the data and plotted the R-squared values against the mean
age of the subsample. The approximate R-squared is the sum of all the estimated �2 values as a function of age.
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regarded as a developmental factor, and the others as individual
factors. Similarly, some levels of RI may be necessary but not
sufficient to resolve some SPM items. This implicative relation
could explain why the closest correlation between RILAT and
SPM scores appeared during the two transitional phases for ternary
and quaternary items, rather than during the early success phases.

The interindividual variance in the RILAT scores for a given
level was of the same magnitude in both these phases. The tran-
sitional phases corresponded to mean success rates of 0.50–0.75 at
the group level, but at the individual level, the 80% expectile
intervals provided in Table 5 indicate that individual success rates
ranged from around 0.40 to around 0.90. Thus, during these
periods, while some children failed on more than half the items,
others successfully resolved most of them. If mastery of ternary
relations were a necessary condition for successfully performing
some of the SPM items, the transitional phases would exhibit
higher SPM-RI correlations: While some children would have
fulfilled this necessary condition, others would still be a long way
away from doing so. The smaller contribution of quaternary items,
compared with ternary ones, could be explained by the growing
influence of individual differences in some of the other processes
tapped by the SPM, such as executive control, which is known to
undergo critical changes at around 10 years.

In a recent study, Wiley, Jarosz, Cushen, and Colflesh (2011)
emphasized the potential role of executive functioning to explain
the correlation between performances on Raven’s Advanced Pro-
gressive Matrices (RAPM) and scores on operation span (OSpan)
and reading span tasks. They showed that this correlation was
considerably stronger for RAPM items containing rule combina-
tions that appeared for the first time in the task than for items that
recycled previously discovered rules. According to the authors,
high WM participants displayed a greater ability to inhibit previ-
ously used rules and avoid perseverative errors. Individual differ-
ences on WM tasks such as reading span and OSpan can be
interpreted as stemming from the need to rely on executive abili-
ties to maintain and retrieve task-relevant information in the pres-
ence of interference arising from the multiple activities (e.g.,
resolving the operation and learning a list of words in OSpan) that
these tasks impose on participants (Unsworth & Engle, 2007).

Executive functioning is probably also involved in resolving
RILAT items, but our main hypothesis is that RI, rather than
executive functioning, was responsible for the relationship we
observed between RILAT and SPM scores. One possibility is that
a degree of RI is needed to handle the multiple rules involved in
resolving SPM items. This rule/capacity hypothesis predicts stron-
ger correlations between RI assessments and SPM items involving
more rules, but this prediction has been refuted by empirical results
(Unsworth & Engle, 2005; Wiley et al., 2011). According to Wiley
et al. (2011), the relevant feature is the novelty of the rule or
combination of rules, rather than the sheer number of rules.

As an alternative to Wiley et al.’s (2011) executive functioning
hypothesis, we therefore postulate that the discovery of a new rule
is more demanding because it requires simultaneously considering
all the dimensions of the problem in order to identify the relevant
relationships. Once the rules have been identified, segmentation
and chunking become possible, thereby reducing the demand for
RI. This hypothesis is also consistent with Wiley et al.’s finding
that it is rule novelty, not rule change from one item to the next,

that taps executive functioning, explaining the magnitude of the
relationship between WM and reasoning.

Our findings are also compatible with ideas developed by Van
der Maas et al. (2006) in their dynamic model of the positive
manifold of intelligence by mutualism. This model hypothesizes
that the general factor of intelligence emerges as a byproduct of
beneficial interactions between cognitive processes in the course
of development. One example of such an interaction is the way in
which better short-term memory helps us to develop better cogni-
tive strategies, which reciprocally enhance short-term memory.
This kind of relationship probably exists between RI and other
processes involved in reasoning tasks, such as executive function
or mental model formation. A higher level of RI would allow for
the emergence of better mental models, which, in return, would
reduce the task’s WM demands.

Within this framework, the changes in the correlation between
RILAT and SPM scores across childhood would reflect stronger
interactions during the transitional phases, producing specific in-
dividual differences where some children become capable of
building higher level representations of SPM items and others do
not. Our idea is that individual differences in fluid intelligence may
be determined by varying aptitudes, depending on the point the
child has reached in the developmental course. This fits in well
with Van der Maas et al.’s (2006) model of intelligence through
mutualism.
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